DOI QR코드

DOI QR Code

Investigating the Thermodynamic Behavior of a Dichloromethane/Carbon Dioxide Mixture Using Equations of State

상태방정식을 이용한 디클로로메탄/이산화탄소 혼합 용매의 열역학적 거동 연구

  • Kwon, Woong (Department of Textile Engineering, Kyungpook National University) ;
  • Lee, Kwonyun (Department of Textile Engineering, Kyungpook National University) ;
  • Jeong, Euigyung (Department of Textile Engineering, Kyungpook National University)
  • 권웅 (경북대학교 섬유시스템공학과) ;
  • 이권윤 (경북대학교 섬유시스템공학과) ;
  • 정의경 (경북대학교 섬유시스템공학과)
  • Received : 2022.09.17
  • Accepted : 2022.10.22
  • Published : 2022.10.31

Abstract

Single- or multi-component supercritical fluids, which exhibit excellent solubility in polymers, are used as solvents in polymer-based industries. Because their properties change easily with volume, temperature, and pressure, the use of single- or multi-component supercritical fluids in industrial applications requires the supercritical fluid apparatus to be designed according to the required volume, temperature, and pressure. Supercritical fluid apparatus design and optimization can benefit greatly from the analysis and understanding of the thermodynamic behavior of single- or multi-component fluids. Therefore, this study investigated the correlation between the composition ratio of a dichloromethane/carbon dioxide mixture and pressure at 200 ℃ using ideal gas, van der Waals, Redlich-Kwong, Soave-Redlich-Kwong, and Peng-Robinson equations of state. The critical temperature according to the compositional change of the dichloromethane/carbon dioxide mixture was predicted by the basic mixing rule. This analysis of the thermodynamic behavior of the dichloromethane/carbon dioxide mixture can be used for optimizing supercritical fluid apparatuses.

Keywords

Acknowledgement

본 연구는 2022년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임(과제번호 20015746).

References

  1. G. Brunner, "Applications of Supercritical Fluids", Annu. Rev. Chem. Biomol. Eng., 2010, 1, 321-342. https://doi.org/10.1146/annurev-chembioeng-073009-101311
  2. S.-D. Yeo and E. Kiran, "Formation of Polymer Particles with Supercritical Fluids: A Review", J. Supercrit. Fluids, 2005, 34, 287-308. https://doi.org/10.1016/j.supflu.2004.10.006
  3. S. Kazarian, "Polymer Processing with Supercritical Fluids", Polymer Science Series CC/C of Vysokomolekuliarnye Soedineniia, 2000, 42, 78-101.
  4. A. I. Cooper, "Polymer Synthesis and Processing Using Supercritical Carbon Dioxide", J. Mater. Chem., 2000, 10, 207-234. https://doi.org/10.1039/a906486i
  5. J. L. Kendall, D. A. Canelas, J. L. Young, and J. M. DeSimone, "Polymerizations in Supercritical Carbon Dioxide", Chem. Rev., 1999, 99, 543-564. https://doi.org/10.1021/cr9700336
  6. M. A. Mchugh, "Green Chemistry Using Liquid and Supercritical Carbon Dioxide", Oxford University Press, 2003, pp.125-133.
  7. M. A. Meneses, G. Caputo, M. Scognamiglio, E. Reverchon, and R. Adami, "Antioxidant Phenolic Compounds Recovery from Mangifera Indica L. By-products by Supercritical Antisolvent Extraction", J. Food Eng., 2015, 163, 45-53. https://doi.org/10.1016/j.jfoodeng.2015.04.025
  8. B.-C. Lee and Y.-M. Kuk, "Phase Behavior of Poly(L-lactide) in Supercritical Mixtures of Dichloromethane and Carbon Dioxide", J. Chem. Eng. Data, 2002, 47, 367-370. https://doi.org/10.1021/je010270c
  9. E.-S. Ha, H. Park, S.-K. Lee, W.-Y. Sim, J.-S. Jeong, I.-H. Baek, and M.-S. Kim, "Pure Trans-resveratrol Nanoparticles Prepared by a Supercritical Antisolvent Process Using Alcohol and Dichloromethane Mixtures: Effect of Particle Size on Dissolution and Bioavailability in Rats", Antioxidants, 2020, 9, 342. https://doi.org/10.3390/antiox9040342
  10. E. Kwartiningsih, W. B. Sediawan, M. Hidayat, and A. T. Yuliansyah, "Preparation of Supercritical Fluid Extraction Using Dry Ice and Exploration of Equation of State to Predict the Operating Conditions", AIP Conference Proceedings, 2018, 1977, 020012.
  11. W. Kwon, J. Kim, K. Lee, and E. Jeong, "Correlation between Volume and Pressure of Dichloromethane Using Equation of State", Text. Color. Finishing, 2021, 33, 141-146.
  12. M. Stievano and N. Elvassore, "High-pressure Density and Vapor-liquid Equilibrium for the Binary Systems Carbon Dioxide-ethanol, Carbon Dioxide-acetone and Carbon Dioxide-dichloromethane", J. Supercrit. Fluids, 2005, 33, 7-14. https://doi.org/10.1016/j.supflu.2004.04.003
  13. K. M. Teeny and J. S. Cooper, "Ideal Gas Behavior", StatPearls Publishing: Treasure Island, FL, USA, 2020.
  14. G. Soave, "Improvement of the van der Waals Equation of State", Chem. Eng. Sci., 1984, 39, 357-369. https://doi.org/10.1016/0009-2509(84)80034-2
  15. O. Redlich and J. N. Kwong, "On the Thermodynamics of Solutions. V. An Equation of State. Fugacities of Gaseous Solutions", Chemical Rev., 1949, 44, 233-244. https://doi.org/10.1021/cr60137a013
  16. G. Soave, "Equilibrium Constants from a Modified Redlichkwong Equation of State", Chem. Eng. Sci., 1972, 27, 1197-1203. https://doi.org/10.1016/0009-2509(72)80096-4
  17. D.-Y. Peng and D. B. Robinson, "A New Two-constant Equation of State", Ind. Eng. Chem. Fundam., 1976, 15, 59-64. https://doi.org/10.1021/i160057a011
  18. T. Kwak and G. Mansoori, "Van der Waals Mixing Rules for Cubic Equations of State. Applications for Supercritical Fluid Extraction Modelling", Chem. Eng. Sci., 1986, 41, 1303-1309. https://doi.org/10.1016/0009-2509(86)87103-2
  19. K.-J. Kim, J.-Y. Heo, J.-C. Kim, J.-Y. Koo, and H.-G. Sung, "A Comparative Study of Single Component Thermophysical Properties Using the Real Gas Equation of State at Supercritical Conditions", J. Korean Soc. Propulsion Eng., 2010, 14, 39-51.
  20. R. C. Reid, "The Properties of Gases and Liquids", McGraw- Hill, New York, 1977, pp.723-729.
  21. D. A. Mayer, E. A. Rebelatto, P. M. Ndiaye, M. Lanza, D. b. de Oliveira, S. M. Guelli U. de Souza, and J. V. Oliveira, "High Pressure Phase Equilibrium Data for the Ternary System Containing Carbon Dioxide, Dichloromethane, and ε- caprolactone", J. Chem. Eng. Data, 2019, 64, 2036-2044. https://doi.org/10.1021/acs.jced.8b01017