DOI QR코드

DOI QR Code

Production of Fermented Saccharina Japonica Extract with Enhanced GABA Content

GABA 함량이 강화된 발효다시마 추출액 제조

  • Hur, Sun-Sun (ivision of Health and Welfare, Depart of BioFood Science, Joongbu University)
  • 허상선 (중부대학교 바이오식품학전공)
  • Received : 2022.07.30
  • Accepted : 2022.08.13
  • Published : 2022.08.30

Abstract

The purpose of this study was to enhance the gamma-aminobutyric acid (GABA) production of sea tangle extracts, through techniques based on enzymatic hydrolysis and the addition of mixed fermentative lactic acid bacteria. GABA production in the strains was qualitatively confirmed via detection of colored spots using thin layer chromatography. L. plantarum KCTC 21004, L. acidophilus KCTC 3164 and L. sakei subsp. sakei KCTC 3598 were selected as the suitable strains for GABA production. As for the characteristics of fermentation of lactic acid bacteria using the selected strain, as the fermentation time increased, the titrated acidity increased and the pH showed a tendency to decrease. Among the three strains with excellent GABA production ability, L. plantarum KCTC 21004 showed excellent GABA production of 136.4 mg/100g. These research results are expected to be provided a basis for the utilization of lactic acid bacteria in GABA production using a sea tangle extract.

본 연구의 목적은 효소 가수분해 및 유산균 혼합발효기술을 이용하여 GABA 함량이 강화된 발효 다시마 추출물을 생산함에 있다. TLC 분석방법을 통해 GABA 생성능력이 우수한 균주 L. plantarum KCTC 21004, L. acidophilus KCTC 3164, L. sakei subsp. sakei KCTC 3598를 선정하였다. 선정된 균주를 이용한 유산균 발효의 특성은 배양 시간이 증가 할수록 적정 산도는 증가하였고 pH는 감소하는 경향을 나타내었다. GABA 생성능력이 우수한 3종의 균주 중 L. plantarum KCTC 21004이 GABA 함량이 136.4 mg/100g으로 우수하였다. 이러한 연구 결과는 유산균을 이용한 GABA 생산과정에 있어서 기초적인 자료로 제공될 것으로 판단된다.

Keywords

Acknowledgement

이 논문은 2021년도 중부대학교 학술연구비 지원에 의하여 이루어진 것임

References

  1. J. Reboleira, S. Silva, A. Chatzifragkou, K. Niranjan, M. F. L. Lemosa, "Seaweed fermentation within the fields of food and natural products", Trends in Food Science & Technology, Vol.116, No.6, pp. 1056-1073, (2021). https://doi.org/10.1016/j.tifs.2021.08.018
  2. B. M. Ryu, Y. J. Jeon, "Development of functional food products with natural materials derived marine resources", Food Science and Industry, Vol.51, No.2, pp. 157-164, (2018). https://doi.org/10.23093/FSI.2018.51.2.157
  3. J. I. Nie, X. Fu, L. Wang, J. C. Xu, X. Gao, "A systematic review of fermented Saccharina japonica: Fermentation conditions, metabolites, potential health benefits and mechanisms," Trends in Food Science & Technology, Vol.123, pp. 15-27, (2022). https://doi.org/10.1016/j.tifs.2022.03.001
  4. D. Rashmi, R. Zanan, S. John, K. Khandagale, A. Nadaf, "Chapter 13-𝛾-aminobutyric acid (GABA): biosynthesis, role, commercial production, and applications", Studies in Natural Products Chemistry, Vol.57, pp. 413-452, (2018). https://doi.org/10.1016/B978-0-444-64057-4.00013-2
  5. B. J. Lee, J. S. Kim, Y. M. Kang, J. H. Lim, Y. M. Kim, M. S. Lee, M. H. Jeong, C. B. Ahn, J. Y. Je, "Antioxidant activity and 𝛾-aminobutyric acid (GABA) content in sea tangle fermented by Lactobacillus brevis BJ20 isolated from traditional fermented foods", Food Chemistry, Vol.122, No.1, pp. 271-276, (2010). https://doi.org/10.1016/j.foodchem.2010.02.071
  6. H. Luo, Z. Liu, F. Xie, M. Bilal, L. Liu, R. Yang, "Microbial production of gamma-aminobutyric acid: applications, state-of-the-art achievements, and future perspectives", Critical Reviews in Biotechnology, Vol.41, No.4, pp. 491-512, (2021). https://doi.org/10.1080/07388551.2020.1869688
  7. L. Zhang, Y. Yue, X. Wang, W. Dai, C. Piao, H. Yu, "Optimization of fermentation for 𝛾-aminobutyric acid (GABA) production by yeast Kluyveromyces marxianus C21 in okara (soybean residue)", Bioprocess and Biosystems Engineering, Vol.45, No.7, pp. 1111-1123, (2022). https://doi.org/10.1007/s00449-022-02702-2
  8. P. G. Cataldo, J. M. Villegas, G. S. de Giori, L. Saavedra, E. M. Hebert, "Enhancement of 𝛾-aminobutyric acid (GABA) production by Lactobacillus brevis CRL 2013 based on carbohydrate fermentation" International Journal of Food Microbiology, Vol.333, No.16, pp. 108792, (2020). https://doi.org/10.1016/j.ijfoodmicro.2020.108792
  9. G. Huang, S. Wen, S. Liao, Q. Wang, S. Pan, R. Zhang, F. Lei, W. Liao, J. Feng, S. Huang, "Characterization of a bifunctional alginate lyase as a new member of the polysaccharide lyase family 17 from a marine strain BP-2", Biotechnology letters, Vol.41, No.10, pp. 1187-1200, (2019). https://doi.org/10.1007/s10529-019-02722-1
  10. H. S. Kim, "Homology modeling and characterization of oligoalginate lyase from the alginolytic marine bacterium sphingomonas sp. strain MJ-3", Journal of Life Science, Vol.25, No.2, pp. 121-129, (2015). https://doi.org/10.5352/JLS.2015.25.2.121
  11. E. Y. Park, Y. J. Kim, S. M. Jeong, D. H. Lee, "Orignal paper : Optimal cnditions of ezymatic hdrolysis of aginic aid in bown agal carbohydrate", Journal of korea society of waste management, Vol.30, No.4, pp. 304-318, (2013). https://doi.org/10.9786/kswm.2013.30.4.304
  12. N. R. M. Sahab, E. Subroto, R. L. Balia, G. L. Utama, "𝛾-Aminobutyric acid found in fermented foods and beverages : current trends", Heliyon, Vol.6, No.11, pp. e05526, (2020). https://doi.org/10.1016/j.heliyon.2020.e05526
  13. G. L. Miller, "Use of dinitrosalicylic acid reagent for determination of reducing sugar", Analytical Chemistry, Vol.31, No.3, pp. 426-428, (1959). https://doi.org/10.1021/ac60147a030
  14. Y. X. Xu, L. Yang, Y. S. Lei, R. N. Ju, S. G. Miao, S. H. Jin, "Integrated transcriptome and amino acid profile analyses reveal novel insights into differential accumulation of theanine in green and yellow tea cultivars", Tree Physiology, Vol 42, No.7, pp. 1501-1516, (2022). https://doi.org/10.1093/treephys/tpac016
  15. B. Y. Park, K. Y. Yoon, "Conditions for hydrolysis of perilla seed meal protein for roducing hydrolysates and ultrafiltered peptides and their antioxidant activity', Korean Journal of Food Preservation, Vol.25, No.5, pp. 605-612, (2018). https://doi.org/10.11002/kjfp.2018.25.5.605
  16. Y. Sawai, K. Konomi, Y. Odaka, H. Yoshitomi, Y. Yamaguchi, D. Miyama, "Contents of 𝛾-aminobutyric acid in stem of anaerobic incubated tea shoot", Nippon Shokuhin Kagaku Kogaku Kaishi, Vol.46, No.4, pp. 274-277, (1999). https://doi.org/10.3136/nskkk.46.274
  17. Y. H. Pyo, "Effect of Monascusfermentation on the content of GABA and free amino acids in soybean", Journal of the Korean Society of Food Science and Nutrition, Vol.37, No.9, pp. 1208-1213, (2008). https://doi.org/10.3746/JKFN.2008.37.9.1208
  18. G. Jeon, M. Y. Lee, Y. Joon, S. Jang, M. Jung, H. S. Jung, J. Lee, "Effects of heat treatment and selected medicinal plant extracts on GABA content after germination", ,Journal of the Korean Society of Food Science and Nutrition, Vol.39, No.1, pp. 154-158, (2010). https://doi.org/10.3746/JKFN.2010.39.1.154
  19. D. C. Kim, J. W. Choi, M. J. In, "Utilization of Leuconostoc mesenteroides 310-12 strain in the fermentation of a traditional Korean rice-based beverage", Journal of Applied Biological Chemistry, Vol.54, No.1, pp. 21-25, (2011). https://doi.org/10.3839/jabc.2011.004
  20. T. S. Shin, Z. Xue, Y. W. Do, S. I. Jeong, H. C. Woo, N. G. Kim, "Chemical properties of sea tangle(Saccharina. japonica)cultured in the different depths of seawater", Clean Technology, Vol.17, No.4, pp. 395-405, (2011). https://doi.org/10.7464/KSCT.2011.17.4.395
  21. J. S. Lim, S. P. Lee, "Production of set-type yogurt fortified with peptides and 𝛾-aminobutyric acid by mixed fermentation using Bacillus subtilis and Lactococcus lactis", Korean Journal of Food Science and Technology, Vol.46, No.2, pp. 165-172, (2014). https://doi.org/10.9721/KJFST.2014.46.2.165