DOI QR코드

DOI QR Code

Evaluation of reaction site prediction in 3-ring PAHs according to calculation level

  • Received : 2022.08.01
  • Accepted : 2022.08.23
  • Published : 2022.08.30

Abstract

The radical reaction position was calculated by varying the calculation level for ACEL and ANT, which are detected with the highest frequency and concentration in PAHs pollution sites. The results of each calculation level were compared and evaluated with the existing literature. HF, B3LYP, B3LYP-D, and MP2 were used as the method for each level used for calculation. Except for HF, the MK charge by B3LYP, B3LYP-D, and MP2 was consistent with the experimental results. It was found that the dispersion effect was negligible in the calculation of ACEL and ANT because the calculation results by the B3LYP and B3LYP-D methods were the same. In particular, it was found that the MK charge calculation result by MP2 agrees well with the product/PAH ratio obtained as a result of the experiment. Considering the calculation cost, it would be preferable to use B3LYP to predict the radical reaction site of ACEL and ANT. However, considering the product/PAH ratio, it takes more time to calculate, but it is judged that it is better to use the MP2.

Keywords

Acknowledgement

This Research was supported by the Uiduk University Research Grant, 2022.

References

  1. C.-T. Li, Y.-C. Lin, W.-J. Lee, P.-J. Tsai, "Emission of polycyclic aromatic hydrocarbons and their carcinogenic potencies from cooking sources to the urban atmosphere", Environ. Health Perspec., Vol.111, No.4, pp. 483-487, (2003). https://doi.org/10.1289/ehp.5518
  2. H. Shen, Y. Huang, R. Wang, D. Zhu, W. Li, G. Shen, B. Wang, Y. Zhang, Y. Chen, Y. Lu, H. Chen, T. Li, K. Sun, B. Li, W. Liu, J. Liu, S. Tao, "Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions", Environ. Sci. Technol., Vol.47, No.12, pp. 6415-6424, (2013). https://doi.org/10.1021/es400857z
  3. E. V. Yakovleva, D. N. Gabov, V. A. Beznosikov, B. M. Kondratenok, Y. A. Dubrovskiy, "Accumulation of PAHs in tundra plants and soils under the influence of coal mining", Polycyc. Arom. Comp., Vol.37, No.2-3, pp. 203-218 (2017). https://doi.org/10.1080/10406638.2016.1244089
  4. I. Aldrighi, B. Cristiano, D. Ferreiraa, J. Luis, F. Monksb, P. Jose, S.-F. Moacir, C. Eliasa, "Accumulation of polycyclic aromatic hydrocarbons (PAHs) in rice subjected to drying with different fuels plus temperature, industrial processes and cooking", J. Food Comp. Anal., Vol.66, pp. 109-115, (2018). https://doi.org/10.1016/j.jfca.2017.12.009
  5. W. Wilcke, Polycyclic Aromatic Hydrocarbons (PAHs) in Soil, J. Plant Nutr. & Soil Sci., Vol.163, No.3, pp. 229-243, (2000). https://doi.org/10.1002/1522-2624(200006)163:3<229::AID-JPLN229>3.0.CO;2-6
  6. W. Wilcke, "Global patterns of polycyclic aromatic hydrocarbons (PAHs) in soil", Geoderma Vol.141, No.3-4, pp. 157-166, (2007). https://doi.org/10.1016/j.geoderma.2007.07.007
  7. M. Honda and N. Suzuki, "Toxicities of polycyclic aromatic hydrocarbons for aquatic animals", Int. J. Environ. Res. Public Health, Vol.17, No.4, pp. 1363, (2020). https://doi.org/10.3390/ijerph17041363
  8. A. B. Patel, S. Shaikh, K. R. Jain, C. Desai, and D. Madamwar, "Polycyclic Aromatic Hydrocarbons: Sources, Toxicity, and Remediation Approaches", Front. Microbiol., Vol.11, pp. 562813, (2020). https://doi.org/10.3389/fmicb.2020.562813
  9. A. Krzyszczak and B. Czech, "Occurrence and toxicity of polycyclic aromatic hydrocarbons derivatives in environmental matrices", Sci. Total. Environ., Vol.788 pp. 147738, (2021). https://doi.org/10.1016/j.scitotenv.2021.147738
  10. E. Ferrarese, G. Andreotto, and l. A. Oprea, "Remediation of PAH-contaminated sediments by chemical oxidation", J. Hazard. Mater., Vol.152, No.1, pp. 128-139, (2008). https://doi.org/10.1016/j.jhazmat.2007.06.080
  11. S. Gitipour, G. A. Sorial, S. Ghasemi, M. Bazyari, "Treatment technologies for PAH-contaminated sites: a critical review", Environ. Monit. Assess., Vol.190, No.546, pp. 546-554, (2018). https://doi.org/10.1007/s10661-018-6936-4
  12. G. D. Sayles, C. M. Acheson, M. J. Kupferle, Y. Shan, Q. Zhou, J. R. Meier, L. Chang, R. C. Brenner, "Land Treatment of PAH-Contaminated Soil: Performance Measured by Chemical and Toxicity Assays", Environ. Sci. Technol., Vol.33, No.23, pp. 4310-4317, (1999). https://doi.org/10.1021/es9810181
  13. A. Londono-Hurtadoa, I. Szlufarskaab, D. Morgan, "DFT-based prediction of fission product sorption on carbon structures under O2 ingress conditions", J. Nuclaer Matter., Vol.437, No.1-3, pp. 389-400, (2013). https://doi.org/10.1016/j.jnucmat.2013.02.024
  14. Y. Guan, S. V. S. Sowndarya, L. C. Gallegos, P. C. St. John, R. S. Paton, "Real-time prediction of 1H and 13C chemical shifts with DFT accuracy using a 3D graph neural network", Chem. Sci., Vol.12, No.36, pp. 12012-12026, (2021). https://doi.org/10.1039/D1SC03343C
  15. M. J. Lee, B.-D. Lee, "Evaluation of OH radical reaction positions in 3-ring PAHs using transition state energy and atomic charge calculations", Appl. Sci. Vol.12, No.5, pp. 2479, (2022). https://doi.org/10.3390/app12052479
  16. B.-D. Lee, "A comparison of the experiment results and the radical degradation pathway in PCE through atomic charge calculation", J. Kor. Appl. Sci. Technol., Vol.33, No.3, pp. 492-497, (2016).
  17. B.-D. Lee, M. Iso, and M. Hosomi, "Prediction of Fenton oxidation positions in polycyclic aromatic hydrocarbons by Frontier electron density", Chemoshpere Vol.42, No.4, pp. 431-435, (2001). https://doi.org/10.1016/S0045-6535(00)00061-8
  18. R. Dennington, T. A. Keith, and J. M. Millam, GaussView, Version 6, Semichem Inc., Shawnee Mission, KS, USA (2016).
  19. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, N. Rega, P. Salvador, J. J. Dannenberg, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. D. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C, Gonzalez, M. Head-Gordon, E. S. Replogle, J. A. Pople, Gaussian 09, Revision D. 01, Gaussian Inc., Wallingford, CT, USA (2013)
  20. B. H. Besler, K. M. Merz Jr., P. A. Kollman, "Atomic charges derived from semiempirical methods", J. Comp. Chem., Vol.11, No.4, pp. 431-439, (1990). https://doi.org/10.1002/jcc.540110404