Uncertainty Sequence Modeling Approach for Safe and Effective Autonomous Driving

안전하고 효과적인 자율주행을 위한 불확실성 순차 모델링

  • 윤재웅 (인하대학교 전기컴퓨터공학과) ;
  • 이주홍 (인하대학교 컴퓨터공학과)
  • Received : 2022.08.17
  • Accepted : 2022.09.26
  • Published : 2022.10.31

Abstract

Deep reinforcement learning(RL) is an end-to-end data-driven control method that is widely used in the autonomous driving domain. However, conventional RL approaches have difficulties in applying it to autonomous driving tasks due to problems such as inefficiency, instability, and uncertainty. These issues play an important role in the autonomous driving domain. Although recent studies have attempted to solve these problems, they are computationally expensive and rely on special assumptions. In this paper, we propose a new algorithm MCDT that considers inefficiency, instability, and uncertainty by introducing a method called uncertainty sequence modeling to autonomous driving domain. The sequence modeling method, which views reinforcement learning as a decision making generation problem to obtain high rewards, avoids the disadvantages of exiting studies and guarantees efficiency, stability and also considers safety by integrating uncertainty estimation techniques. The proposed method was tested in the OpenAI Gym CarRacing environment, and the experimental results show that the MCDT algorithm provides efficient, stable and safe performance compared to the existing reinforcement learning method.

심층강화학습은 자율주행 도메인에서 널리 사용되는 end-to-end 데이터 기반 제어 방법이다. 그러나 기존의 강화학습 접근 방식은 자율주행 과제에 적용하기에는 비효율성, 불안정성, 불확실성 등의 문제로 어려움이 존재한다. 이러한 문제들은 자율주행 도메인에서 중요하게 작용한다. 최근의 연구들은 이런 문제를 해결하고자 많은 시도가 이루어지고 있지만 계산 비용이 많고 특별한 가정에 의존한다. 본 논문에서는 자율주행 도메인에 불확실성 순차 모델링이라는 방법을 도입하여 비효율성, 불안정성, 불확실성을 모두 고려한 새로운 알고리즘 MCDT를 제안한다. 강화학습을 높은 보상을 얻기 위한 의사 결정 생성 문제로 바라보는 순차 모델링 방식은 기존 연구의 단점을 회피하고 효율성과 안정성을 보장하며, 여기에 불확실성 추정 기법을 융합해 안전성까지 고려한다. 제안 방법은 OpenAI Gym CarRacing 환경을 통해 실험하였고 실험 결과는 MCDT 알고리즘이 기존의 강화학습 방법에 비해 효율적이고 안정적이며 안전한 성능을 내는 것을 보인다.

Keywords

Acknowledgement

이 논문은 2022년도 한국연구재단의 지원을 받아 수행된 기초연구사업임 (2021R1F1A1050120, NRF-2020R1F1A1069361)

References

  1. A. Eskandarian, W. Chaoxian, "Research advances and challenges of autonomous and connected ground vehicles," IEEE Transactions on Intelligent Transportation Systems, Vol. 22, No. 2, pp. 683-711, Dec. 2019. https://doi.org/10.1109/TITS.2019.2958352
  2. A. Pandian, "Challenges in Autonomous Vehicle Development," International Conference on Industrial Engineering and Operations Management, Aug. 2019.
  3. E. Yurtsever, J. Lambert, "A survey of autonomous driving: Common practices and emerging technologies," IEEE access, Vol. 8, pp. 58443-58469, Mar. 2020. https://doi.org/10.1109/ACCESS.2020.2983149
  4. S. Kuutti, R. Bowden, "A survey of deep learning applications to autonomous vehicle control," IEEE Transactions on Intelligent Transportation Systems, Vol. 22, No. 2, pp. 712-733, Jan. 2020.
  5. A.E. Sallab, M. Abdou, "End-to-end deep reinforcement learning for lane keeping assist," arXiv preprint arXiv:1612.04340, 2016.
  6. W. Yuanqing, L. Siqin, "Deep reinforcement learning on autonomous driving policy with auxiliary critic network," IEEE transactions on neural networks and learning systems, Oct. 2021.
  7. A.V. Bernstein, E.V. Burnaev, "Reinforcement learning for computer vision and robot navigation," In: International Conference on Machine Learning and Data Mining in Pattern Recognition. Springer, Cham, pp. 258-272, Jul. 2018.
  8. R.S. Sutton, A.G. Barto, "Reinforcement learning: An introduction," MIT press, 2018.
  9. G. Chuan, P. Geoff, "On calibration of modern neural networks," In: International conference on machine learning. PMLR, pp. 1321-1330, 2017.
  10. Y. Gal, "Uncertainty in deep learning", PhD thesis, University of Cambridge, 2016.
  11. J. Chen, B. Yuan, M. Tomizuka, "Deep imitation learning for autonomous driving in generic urban scenarios with enhanced safety," In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 2884-2890, Macau, China, Nov. 2019.
  12. S. Chen, M. Wang, W. Song and Y. Yang, "Stabilization approaches for reinforcement learning- based end-to-end autonomous driving," IEEE Transactions on Vehicular Technology, Vol. 69, No. 5, pp. 4740-4750, Mar. 2020. https://doi.org/10.1109/TVT.2020.2979493
  13. H. Liu, Z. Huang, J. Wu, "Improved deep reinforcement learning with expert demonstrations for urban autonomous driving," In 2022 IEEE Intelligent Vehicles Symposium (IV), pp. 921-928, Aachen, Germany, Jun. 2022.
  14. H. Gao, G. Shi, G. Xie, "Car-following method based on inverse reinforcement learning for autonomous vehicle decision-making," International Journal of Advanced Robotic Systems, Vol. 15, No. 6, Dec. 2018.
  15. Z. Qiao, Z. Tyree, "Hierarchical reinforcement learning method for autonomous vehicle behavior planning," In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6084-6089, Las Vegas, USA, Oct. 2020.
  16. T. Shi, P. Wang, X. Cheng, "Driving decision and control for automated lane change behavior based on deep reinforcement learning," In 2019 IEEE intelligent transportation systems conference (ITSC), pp. 2895-2900, Auckland, New Zealand, Oct. 2019.
  17. Z. Cao, E. Biyik, "Reinforcement learning based control of imitative policies for near-accident driving," arXiv preprint arXiv:2007.00178, 2020.
  18. B. Gangopadhyay, P. Dasgupta, "Safe and Stable RL (S2RL) Driving Policies Using Control Barrier and Control Lyapunov Functions," IEEE Transactions on Intelligent Vehicles, Mar. 2022.
  19. K. Min, H. Kim, and K. Huh, "Deep distributional reinforcement learning based high-level driving policy determination," IEEE Transactions on Intelligent Vehicles, Vol. 4, No. 3, pp. 416-424, May, 2019. https://doi.org/10.1109/TIV.2019.2919467
  20. B. Lakshminarayanan, A. Pritzel, "Simple and scalable predictive uncertainty estimation using deep ensembles," NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 6405-6416 Dec. 2017.
  21. C.J. Hoel, K. Wolff, and L. Laine, "Tactical decision-making in autonomous driving by reinforcement learning with uncertainty estimation," In 2020 IEEE Intelligent Vehicles Symposium (IV). IEEE, pp. 1563-1569, Las Vegas, USA, Oct. 2020.
  22. B. Lutjens, M. Everett, and J.P. How, "Safe reinforcement learning with model uncertainty estimates," In 2019 International Conference on Robotics and Automation (ICRA). IEEE, pp. 8662-8668, Montreal, Canada, May, 2019.
  23. M. Janner, Q. Li and S. Levine, "Reinforcement learning as one big sequence modeling problem," In ICML 2021 Workshop on Unsupervised Reinforcement Learning, Jun. 2021.
  24. L. Chen, K. Lu, A. Rajeswaran and K. Lee, "Decision transformer: Reinforcement learning via sequence modeling," Advances in neural information processing systems, pp. 15084-15097, 2021.
  25. Y. Gal, Z. Ghahramani, "Dropout as a bayesian approximation: Representing model uncertainty in deep learning," In international conference on machine learning. PMLR, pp. 1050-1059, 2016.
  26. G. Brockman, V. Cheung, L. Pettersson, J. Schneider, "OpenAI Gym," arXiv preprint arXiv:1606.01540, 2016.
  27. 김영광, 김진술, "자율주행에서 이미지 객체 분할을 위한 강화된 DFCN 알고리즘 성능 연구," 스마트미디어저널, 제9권, 제4호, 9-16쪽, 2020년 12월
  28. 김재상, 문해민, 반성범, "오픈소스 하드웨어 기반 차선검출 기술에 대한 연구," 스마트미디어저널, 제6권, 제3호, 15-20쪽, 2017년 9월
  29. H. N. Quach, H. J. Jo, S. W. Yeom, K. B. Kim, "Link Stability aware Reinforcement Learning based Network Path Planning," Smart Media Journal, Vol. 11, No. 5, pp. 82-90, Jun. 2022.