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SHARP ESTIMATES ON THE THIRD ORDER

HERMITIAN-TOEPLITZ DETERMINANT

FOR SAKAGUCHI CLASSES

Sushil Kumar and Virendra Kumar

Abstract. In this paper, sharp lower and upper bounds on the third or-
der Hermitian-Toeplitz determinant for the classes of Sakaguchi functions

and some of its subclasses related to right-half of lemniscate of Bernoulli,

reverse lemniscate of Bernoulli and exponential functions are investigated.

1. Introduction

Computing estimates on the coefficients and coefficient functionals such as
Fekete-Szegö functional, Hankel determinants and Zalcman conjecture have
been one of the major topics of research in geometric function theory as they
give many interesting geometric properties of the functions under consideration.
The area of q-calculus and the fractional q-calculus have also many applications
in several areas of number theory and combinatorial analysis such as the theory
of partitions [26]. Srivastava et al. [27] discussed the Hankel and Toeplitz
determinants for a subclass of q-starlike functions associated with a general
conic domain. Third Hankel determinant for a subclass of q-starlike functions
associated with the q-exponential functions were investigated in [28]. In the
following few paragraphs we will give basic notions and history needed for
further development in this paper.

Let A be the class of functions of the form f(z) = z+
∑∞

n=2 anz
n defined on

the unit disk D := {z ∈ C : |z| < 1} and a subclass of A containing univalent
functions be denoted by S. There are a list of subclasses of S but the classes of
starlike and convex functions have attracted much during 1920-1980 as these
classes gave a light of hope for correctness of the Bieberbach conjecture [5]. In
1959, Sakaguchi [24] introduced the class of starlike functions with respect to
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symmetric points defined by

S∗s :=

{
f ∈ S : Re

(
2zf ′(z)

(f(z)− f(−z))

)
> 0, z ∈ D

}
.

It is noted that the class of functions univalent and starlike with respect to
symmetrical points includes the classes of convex functions and odd functions
starlike with respect to the origin [24]. Sakaguchi [24] also proved that the
nth coefficient of functions in this class is bounded by 1 as in case of the
convex functions. Further, Das and Singh [4] introduced the class of the convex
functions with respect to symmetric points defined by

Ks :=

{
f ∈ S : Re

(
2(zf ′(z))′

(f(z)− f(−z))′

)
> 0, z ∈ D

}
.

The functions in the class are convex and Das and Singh [4] found that the nth

coefficient of functions in this class is bounded by 1/n, n ≥ 2. The bounds on
the second and third Hankel determinants for these classes were computed by
Krishna et al. [30]. They proved that the non-sharp bounds for the third Hankel
determinant are |H3, 1(f)| ≤ 5/2 and |H3, 1(f)| ≤ 19/135 for starlike and
convex functions with respect to symmetric points, respectively. Recently, the
bounds on the third Hankel determinant were improved by Kumar et al. [16].

To keep the expression brief, let us use the notations:

Ts(f) :=
2zf ′(z)

(f(z)− f(−z))
and Tk(f) :=

(2zf ′(z))′

(f(z)− f(−z))′
.

Using the concept of subordination and by considering the analytic function
ϕ with Reϕ(z) > 0, z ∈ D and ϕ′(0) > 0 which is starlike with respect to
ϕ(0) = 1, Ravichandran [23] introduced two unified subclasses of starlike and
convex functions with respect to symmetric points as follows:

S∗s (ϕ) := {f ∈ S : Ts(f) ≺ ϕ(z)} and Ks(ϕ) := {f ∈ S : Tk(f) ≺ ϕ(z)} .

These classes include many subclasses of S∗s and Ks. For 0 ≤ α < 1, if we take
ϕ(z) = (1+(1−2α)z)/(1−z), the classes S∗s (ϕ) and Ks(ϕ) reduce to following
two subclasses

S∗s (α) = {f ∈ S : Re Ts(f) > α} and Ks(α) = {f ∈ S : Re Tk(f) > α}

consisting of the starlike and convex functions of order α with respect to sym-
metric points, respectively. Further details related to these classes are avail-
able in [1, 6, 22, 29]. Some other subclasses of starlike functions with respect
to symmetric points associated with lemniscate of Bernoulli, exponential func-
tion and reverse lemniscate are obtained by taking ϕ(z) =

√
1 + z, ez and

√
2 − (

√
2 − 1)

√
(1− z)/(1 + 2(

√
2− 1)z), denoted by S∗s, L, S∗s, e and S∗s, RL,

respectively. These classes are analogues to the corresponding classes of star-
like functions studied in [20, 21, 25]. Sharp estimates on the initial coefficients
of the functions belonging to these classes were also investigated in [9].
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In the same line it is interesting to investigate the bound on the Hermitian-
Toeplitz determinant. For q, n ∈ N, the Hermitian-Toeplitz determinant
(see [7, 12]) of order n associated with sequence 〈ak〉k≥1 of the coefficients
of the function f ∈ A, is defined by

(1.1) Tq,n(f) :=

∣∣∣∣∣∣∣∣∣
an an+1 · · · an+q−1
an+1 an · · · an+q−2

...
...

...
...

an+q−1 an+q−2 · · · an

∣∣∣∣∣∣∣∣∣ .
A simple commutation using (1.1) yields the second and third order Hermitian-
Toeplitz determinants as

(1.2)
T2,1(f) = 1− |a2|2 and

T3,1(f) := 2 Re(a22 ā3)− 2|a2|2 − |a3|2 + 1,

respectively. The study of Hermitian-Toeplitz determinants for the subclasses
of normalized analytic functions was investigated in [3,10] and then continued
in [8]. Further recent results in this direction were obtained in [18] and [11].
Cudna et al. [3] investigated the sharp lower and upper bounds for the second
and third Hermitian-Toeplitz determinants for the classes of starlike and convex
functions of order α. Later, Kumar et al. [18] investigated the sharp bounds on
the second and third Hankel determinants for the classes of Janowski starlike
and convex functions and thus generalised the results in [3]. Some recent results
and development can be found in [2, 13–15,17].

The above work motivates us to investigate the sharp bounds on third order
Hermitian-Toeplitz determinants for the classes Ks(α), S∗s (α), S∗s, L, S∗s, e and
S∗s, RL.

2. The classes Ks(α) and S∗
s (α)

This section provides sharp estimates on the second and third order
Hermitian–Toeplitz determinants for the classes Ks(α) and S∗s (α). The class
P of analytic functions with positive real part in the unit disk D plays a vital
role while investigating the bounds on coefficient functionals. We now recall
the following result due to Libera and Zlotkiewicz which will be used in the
proof of main results.

Lemma 2.1 ([19, Lemma 3, p. 254]). Let P be the class of analytic functions
having the Taylor series of the form

(2.1) p(z) = 1 + p1z + p2z
2 + p3z

3 + · · ·

satisfying the condition Re p(z) > 0 (z ∈ D). Then 2p2 = p21 + (4 − p21)ξ for
some ξ ∈ D.
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For any function f(z) = z +
∑∞

n=2 anz
n ∈ S∗s (α), there is a function p ∈ P

of the form (2.1) such that

(2.2) Ts(f) = (1− α)p(z) + α, z ∈ D.

On comparison of the coefficients of like power terms, we get

(2.3) a2 =
(1− α)p1

2
and a3 =

1− α
2

p2.

Now T2,1(f) = 1− |a2|2 = 1− (1− α)2p21/4. Since |pn| ≤ 2 (see [5]), it follows
that (2 − α)α ≤ T2,1(f) ≤ 1. The upper bound is sharp for the function f0
satisfying

(2.4) Ts(f0) =
1 + (1− 2α)z3

1− z3
, z ∈ D,

whereas the lower bound attained for the function f1 satisfying

(2.5) Ts(f1) =
1 + (1− 2α)z

1− z
, z ∈ D.

Theorem 2.2. Let f(z) = z +
∑∞

n=2 anz
n be a function in the class S∗s (α).

Then the following estimates hold

(3− 2α)α2 ≤ T3,1(f) ≤ 1.

The estimates are sharp.

Proof. The well-known fact is that the class of functions with positive real part
P is invariant under rotation and |p1| ≤ 2, where we are not going to loose
anything in considering 0 ≤ p1 ≤ 2. A computation using the expressions (1.2)
and (2.3) for some ξ ∈ D yields

T3,1(f) := 1 +
1

8
(1− α)3p21 Re(2p2)− 1

2
(1− α)2p21 −

1

16
(1− α)2|2p2|2

= 1 +
1

8
(1− α)3p21(p21 + (4− p21) Re(ξ))− 1

2
(1− α)2p21

− 1

16
(1− α)2|p21 + (4− p21) Re(ξ)|2

= 1 +
1

16
(1− 2α)(1− α)2p41 −

1

16
(1− α)2(4− p21)2|ξ|2 − 1

2
(1− α)2p21

− 1

8
(1− α)2α(4− p21)p21 Re(ξ)

= Ψ(p21, |ξ|,Re(ξ)).(2.6)

Since −Re ξ ≤ |ξ| and 0 ≤ α < 1, it follows that

Ψ(p21, |ξ|,Re(ξ)) ≤ Ψ(p21, |ξ|,−|ξ|).

The well-known fact is that the class of functions with positive real part P is
invariant under rotation and |p1| ≤ 2, where we are not going to loose anything
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in considering 0 ≤ p1 ≤ 2. With this consideration, and settings p2 =: x ∈ [0, 4]
and |ξ| =: y ∈ [0, 1], we can write

Ψ(p21, |ξ|,−|ξ|) = H(x, y)

:= 1 +
1

16
(1− 2α)(1− α)2x2 − 1

16
(1− α)2(4− x)2y2

− 1

2
(1− α)2x+

1

8
(1− α)2α(4− x)xy.

The function H needs to be maximize for upper bound over the rectangular
region [0, 4]× [0, 1]. On the boundaries, we see that

H(0, y) = 1− (1− α)2y2 ≤ 1, H(4, y) = (3− 2α)α2,

H(x, 0) = 1− 1

2
(1− α)2x+

1

16
(1− 2α)(1− α)2x2 = k1(x),

and

H(x, 1) = 1− (1− α)2 +
1

2
α(1− α)2x− 1

4
(1− α)2αx2 = k2(x)

for all x ∈ [0, 4] and y ∈ [0, 1]. We notice that k′′1 (x) > 0 and k′′2 (x) < 0 for all
x ∈ (0, 4). Therefore, the function k1 has no maximum in interval (0, 4) and
the function k2 may have maximum in interval (0, 4). We find that k′2(x) = 0
has only one root namely 1 root in (0, 4) and k2(1) = k2(1) = (3 − α)2α/4,
k2(4) = (3−2α)α2, k2(0) = 1−(1−α)2. Further calculations give k1(0) = 1 and
k1(4) = (3−2α)α2. Now we examine the function H in interior of [0, 4]× [0, 1].
For this, we observe that

∂H(x, y)

∂y
=

1

8
((1− α)2α(4− x)x− (1− α)2(4− x)2y) = 0⇔ y = y1 =

αx

4− x
and

∂H(x, y1)

∂x
=

1

8
(1− α)2(−4 + x(1− α)2) = 0⇔ x = x′ =

4

(1− α)2

and so y1 = 1/(α − 2). Clearly we see that y1 < 0 for 0 ≤ α < 1. So there is
no maxima of the function H inside (0, 4)× (0, 1). Therefore,

T3,1(f) ≤ max {H(0, 0), H(0, 1), H(1, 0), H(1, 1)} = 1.

From (2.6), we note that

Ψ(p21, |ξ|,Re(ξ)) ≥ Ψ(p21, |ξ|, |ξ|)
≥ Ψ(p21, 1, 1) = Ψ(p21).

With settings p2 =: x ∈ [0, 4], we can write Ψ(p21) = G(x), where

G(x) = 1 +
1

16
(1− 2α)(1− α)2x2 − 1

16
(1− α)2(4− x)2

− 1

2
(1− α)2x+

1

8
(1− α)2α(4− x)x.
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Since G′′(x) < 0 for all x, it follows that the minimum may attain only at the
end points of [0, 4]. Note that G(0) = 1 − (1 − α)2 and G(4) = (3 − 2α)α2.
Therefore,

T3,1(f) ≥ min {G(0), G(1)} = G(4).

The lower and upper bounds are sharp for the function f0 and f1 defined by
(2.4) and (2.5), respectively. �

If α = 0, Theorem 2.2 yields the following sharp bound on Hermitian-
Toeplitz determinant of the third order of starlike functions with respect to
symmetric points.

Corollary 2.3. Let f(z) = z+
∑∞

n=2 anz
n be a function in the class S∗s . Then

0 ≤ T3,1(f) ≤ 1.

For any function f(z) = z + a2z
2 + a3z

3 + · · · ∈ Ks(α), there is a p ∈ P of
the form (2.1) such that we have

Tk(f) = (1− α)p(z) + α, z ∈ D.

On comparison of the coefficients of like power terms, we get

(2.7) a2 =
(1− α)p1

2
and a3 =

1− α
6

p2.

Now T2,1(f) = 1 − |a2|2 = 1 − (1 − α)2p21/4 and thus we have (2 − α)α ≤
T2,1(f) ≤ 1. The upper bound is sharp in case of the function f̃0 for which

(2.8) Tk(f̃0) =
1 + (1− 2α)z3

1− z3
, z ∈ D,

whereas the lower bound attained for the function f̃1 satisfying

(2.9) Tk(f̃1) =
1 + (1− 2α)z

1− z
, z ∈ D.

Theorem 2.4. Let f(z) = z +
∑∞

n=2 anz
n be a function in the class Ks(α).

Then the best possible bounds on Hermitian-Toeplitz are given by

1

9
(−4 + 20α− α2 − 6α3) ≤ T3,1(f) ≤ 1.

Proof. Using the expressions (1.2) and (2.7) for some ξ ∈ D, we have

T3,1(f) := 1 +
1

144
(5− 6α)(1− α)2p41 −

1

144
(1− α)2(4− p21)2|ξ|2

− 1

2
(1− α)2p21 +

1

72
(1− α)2(2− 3α)(4− p21)p21 Re(ξ)

= Γ(p21, |ξ|,Re(ξ)).

We consider two cases.
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Case (I). Let 0 ≤ α ≤ 2/3. Then Γ(p21, |ξ|,Re(ξ)) ≤ Γ(p21, |ξ|, |ξ|). As
before, we set p2 =: x ∈ [0, 4] and |ξ| =: y ∈ [0, 1] to arrive at

Γ(p21, |ξ|,−|ξ|) = 1 +
1

144
(5− 6α)(1− α)2x2 − 1

144
(1− α)2(4− x)2y2

− 1

2
(1− α)2x+

1

72
(1− α)2(2− 3α)(4− x)xy =: S(x, y).

Here the function S is defined on the rectangular region [0, 4] × [0, 1]. On the
boundary of this region, we have

S(0, y) = 1− 1

9
(1− α)2y2 ≤ 1 and S(4, y) =

1

9
(−4 + 20α− α2 − 6α3).

Also, for all x ∈ [0, 4], we have

S(x, 0) = 1− 1

2
(1− α)2x+

1

144
(1− α)2(5− 6α)x2 =: s1(x)

and

(2.10) S(x, 1) = 1− 1

9
(1− α)2 − 1

6
(1− α)2(2 + α)x =: s2(x).

We note that s′′1 = (5−6α)(1−α)2/72 > 0 for all α ∈ [0, 2/3]. So, the function
s1 has no maximum in interval (0, 4) and s1(0) = 1, s1(4) = (−4 + 20α −
α2 − 6α3)/9. Further, it is easy to see that s2(x) ≤ 1 − (1 − α)2/9. Further
computation shows that the function S(x, y) has no maximum in the interior
of [0, 4]× [0, 1]. Therefore, for 0 ≤ α ≤ 2/3,

T3,1(f) ≤ max {S(0, y), S(4, y)} = 1.

Next we determine the lower bound on T3,1(f). For 0 ≤ α ≤ 2/3 and
p2 =: x ∈ [0, 4], we can write Γ(p21, |ξ|,Re(ξ)) ≥ Γ(p21, |ξ|,−|ξ|) ≥ Γ(p21, 1,−1) =
s2(x), where s2 is defined by (2.10). Note that s′2(x) = 0 if and only if x =
x4 = (10 − 3α)/(2 − 3α) and we observe that x4 /∈ (0. 4). Further, s2(0) =
1− (1− α)2/9 and s2(4) = (−4 + 20α− α2 − 6α3)/9. Thus,

T3,1(f) ≥ max {s2(0), s2(4)} =
−4 + 20α− α2 − 6α3

9
.

Case (II). Consider 2/3 < α ≤ 1. Then Γ(p21, |ξ|,Re(ξ)) ≤ Γ(p21, |ξ|,−|ξ|).
Settings p2 =: x ∈ [0, 4] and |ξ| =: y ∈ [0, 1], we write

Γ(p21, |ξ|,−|ξ|) = 1 +
1

144
(5− 6α)(1− α)2x2 − 1

144
(1− α)2(4− x)2y2

− 1

2
(1− α)2x− 1

72
(1− α)2(2− 3α)(4− x)xy =: T (x, y).

A simple calculation gives

T (0, y) = 1− 1

9
(1− α)2y2 ≤ 1 and T (4, y) =

1

9
(−4 + 20α− α2 − 6α3).
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Also for all x ∈ [0, 4], we have

T (x, 0) = 1− 1

4
(1− α)2x+

1

144
(1− α)2(5− 6α)x2 = t1(x),

and

T (x, 1) = 1+
1

18
(1−α)2(−10+3α)x− 1

36
(1−α)2(−2+3α)x2−1

9
(1−α)2 = t2(x).

We note that t′1(x) = 0 if and only if x = x3 = 36/(5−6α) /∈ (0, 4). Therefore,
we need to check at the end point of [0, 4] and so t1(0) = 1 and t1(4) =
(−4 + 20α − α2 − 6α3)/9. Further, t′2(x) = 0 if and only if x = x4 = (10 −
3α)/(2− 3α) /∈ (0, 4). A simple calculation gives

∂T

∂y
= 0 =

∂T

∂x
if and only if x = x5 =

2

(1− α)2
, y = y5 =

3α− 2

1− 4α+ 2α2

but y5 /∈ (0, 1). Therefore, for 2/3 ≤ α ≤ 1, T3,1(f) ≤ max {T (0, 0), T (4, 0)} =
1. Thus, for all α ∈ [0, 1], we get the desired upper estimate.

Next we determine the lower bound on T3,1(f). For 2/3 ≤ α ≤ 1, we have

Γ(p21, |ξ|,Re(ξ)) ≥ Γ(p21, |ξ|, |ξ|)
≥ Γ(4, 1, 1)

=
(−4 + 20α− α2 − 6α3)

9
.

Combining the discussions of the above two cases, we conclude the desired
estimates for all α ∈ [0, 1]. The lower and upper bounds are sharp for the

function f̃0 and f̃1 defined by (2.8) and (2.10), respectively. �

If α = 0, Theorem 2.4 yields the following sharp bound on Hermitian–
Toeplitz determinant of third order of convex functions with respect to sym-
metric points.

Corollary 2.5. Let f(z) = z+
∑∞

n=2 anz
n be a function in the class Ks. Then

−4

9
≤ T3,1(f) ≤ 1.

3. The classes S∗
s, L, S∗

s, e and S∗
s, RL

Theorem 3.1. Let f(z) = z +
∑∞

n=2 anz
n be a function in the class S∗s, L.

Then the following sharp bounds hold:

221

256
≤ T3,1(f) ≤ 1.

Proof. Let f ∈ S∗s, L. Then, for some p ∈ P of the form (2.1), we have

Ts(f) =

√
2p(z)

p(z) + 1
, z ∈ D.
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On comparison of the coefficients of like power terms, we get

(3.1) a2 =
p1
8

and a3 =
1

64
(−5p21 + 8p2).

Using Lemma 2.1 and expression (3.1), a computation gives

T3,1(f) := 1 +
1

4096
(−3p41 − 128p21 − 16(4− p21)2|ξ|2 + 16(4− p21)p21 Re(ξ))

for some ξ ∈ D. As before, with the settings p2 =: x ∈ [0, 4] and |ξ| =: y ∈ [0, 1],
we have

T3,1(f) ≤ 1 +
1

4096
(−3x2 − 128x− 16(4− x)2y2 + 16(4− x)xy) =: Υ1(x, y)

and

T3,1(f) ≥ 1 +
1

4096
(−3x2 − 128x− 16(4− x)2y2 − 16(4− x)xy) =: Υ2(x, y).

Proceeding as in the proof of Theorem 2.4, we arrive at

Υ1(x, y) ≤ 1 and Υ2(x, y) ≥ 221

258

for all (x, y) ∈ [0, 4] × [0, 1] which gives the desired bounds on T3,1(f). The

upper bound is sharp for the function f2 satisfying Ts(f2) =
√

1 + z3, that is

f2(z) = z +
1

8
z4 + · · ·

and the lower bound is sharp for the function f3 satisfying Ts(f3) =
√

1 + z,
that is

f3(z) = z +
1

4
z2 − 1

16
z3 + · · · .

This ends the proof. �

Theorem 3.2. Let f(z) = z +
∑∞

n=2 anz
n be a function in the class S∗s, e.

Then the best possible bounds on Hermitian–Toeplitz are given by

9

16
≤ T3,1(f) ≤ 1.

Proof. Let f ∈ S∗s, e. Then, for some p ∈ P of the form (2.1), we have

Ts(f) = e(
p(z)−1
p(z)+1 ), z ∈ D.

On comparison of the coefficients of like power terms, we get

(3.2) a2 =
p1
4

and a3 =
1

16
(−p21 + 4p2).

As before, using Lemma 2.1 and expression (3.2), a computation gives

T3,1(f) : = 1 +
1

256
(p41 − 32p21 − 4(4− p21)2|ξ|2)
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for some ξ ∈ D. With the settings p2 =: x ∈ [0, 4] and |ξ| =: y ∈ [0, 1], we have

T3,1(f) = 1 +
1

256
(x2 − 32x− 4(4− x)2y2) =: Ξ(x, y).

By making use of second derivative test for maximum and minimum value of
function Ξ(x, y), we see that

max
x,y∈S

Ξ(x, y) = 1 and min
x,y∈S

Ξ(x, y) =
9

16
.

The equality in case of the lower bound holds for the function f4 satisfying
Ts(f4) = ez, z ∈ D that is for

f4(z) = z +
1

4
z4 + · · · ,

whereas the upper bound is sharp for the function f5 satisfying Ts(f5) = ez
3

,
that is for

f5(z) = z +
1

2
z2 +

1

4
z3 + · · · .

This concludes the proof. �

Theorem 3.3. Let f(z) = z +
∑∞

n=2 anz
n be a function in the class S∗s, RL.

Then the best possible bounds on Hermitian–Toeplitz is given by

1

256
(863− 444

√
2) ≤ T3,1(f) ≤ 1.

Proof. Let f ∈ S∗s, RL. Then, for some p ∈ P of the form (2.1), we have

Ts(f) =
√

2− (
√

2− 1)

√
2p(z)

2(
√

2− 1)p(z) + 3− 2
√

2
, z ∈ D.

Comparison of the coefficients gives

(3.3) a2 =
(5− 3

√
2)p1

8
and a3 =

(51− 39
√

2)p21 + 8(5− 3
√

2)p2
64

.

Using Lemma 2.1 and expression (3.3), we have

T3,1(f) = 1 +
1

4096

(
(1983− 1404

√
2)p41 − 128(43− 30

√
2)p21

−(688− 480
√

2)(4− p21)2|ξ|2

−56(38− 27
√

2)(4− p21)p21 Re(ξ)
)

for some ξ ∈ D. In view of the fact −|z| ≤ Re z ≤ |z| and settings p2 =: x ∈
[0, 4] and |ξ| =: y ∈ [0, 1], we have

T3,1(f) ≤ 1 +
1

4096

(
(1983− 1404

√
2)x2 − 128(43− 30

√
2)x

−(688− 480
√

2)(4− x)2y2

+56(38− 27
√

2)(4− x)xy
)

= η1(x, y)
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and

T3,1(f) ≥ 1 +
1

4096

(
(1983− 1404

√
2)x2 − 128(43− 30

√
2)x

−(688− 480
√

2)(4− x)2y2

−56(38− 27
√

2)(4− x)xy
)

= η2(x, y).

Using second derivative test, we see that the maximum value of the function
η1(x, y) and minimum value of the function η2(x, y) in rectangular domain
S = [0, 4]× [0, 1] are given by

max
x,y∈S

η1(x, y) = 1 and min
x,y∈S

η2(x, y) =
1

256
(863− 444

√
2).

The upper bound is sharp in case of the function f6 satisfying

Ts(f6) =
√

2− (
√

2− 1)

√
1− z3

1 + 2(
√

2− 1)z3
, z ∈ D

that is for

f6(z) = z +
5− 3

√
2

8
z4 + · · · .

The lower bound is sharp in case of the function f7 satisfying

Ts(f7) =
√

2− (
√

2− 1)

√
1− z

1 + 2(
√

2− 1)z
, z ∈ D

that is for

f7(z) = z +
5− 3

√
2

4
z2 +

71− 51
√

2

4
z3 + · · · .

This ends the proof. �
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