ANOTHER CHARACTERIZATION OF THE NORMING SET OF $T \in \mathcal{L}\left({ }^{2} l_{\infty}^{2}\right)$

Sung Guen Kim

Abstract

In this paper we present another characterization of the norming set of $T \in \mathcal{L}\left({ }^{2} l_{\infty}^{2}\right)$ in terms of $\operatorname{Norm}(T) \cap \Omega$ whose proofs are more systematic than those of $\operatorname{Kim}[6]$, where $\Omega=\{((1,1),(1,1))$, $((1,1),(1,-1)),((1,-1),(1,1)),((1,-1),(1,-1))\}$.

1. Introduction

In 1961 Bishop and Phelps [2] initiated and showed that the set of norm attaining functionals on a Banach space is dense in the dual space. Shortly after, attention was paid to possible extensions of this result to more general settings, specially bounded linear operators between Banach spaces. The problem of denseness of norm attaining functions has moved to other types of mappings like multilinear forms or polynomials. The first result about norm attaining multilinear forms appeared in a joint work of Aron, Finet and Werner [1], where they showed that the Radon-Nikodym property is sufficient for the denseness of norm attaining multilinear forms. Choi and Kim [3] showed that the Radon-Nikodym property is also sufficient for the denseness of norm attaining polynomials. Jiménez-Sevilla and Payá [5] studied the denseness of norm attaining multilinear forms and polynomials on preduals of Lorentz sequence spaces.

Let $n \in \mathbb{N}, n \geq 2$. We write S_{E} for the unit sphere of a Banach space E. We denote by $\mathcal{L}\left({ }^{n} E\right)$ the Banach space of all continuous n-linear forms on E endowed with the norm $\|T\|=\sup _{\left(x_{1}, \ldots, x_{n}\right) \in S_{E} \times \cdots \times S_{E}}\left|T\left(x_{1}, \ldots, x_{n}\right)\right| . \mathcal{L}_{s}\left({ }^{n} E\right)$ denote the closed subspace of all continuous symmetric n-linear forms on E. An element $\left(x_{1}, \ldots, x_{n}\right) \in E^{n}$ is called a norming point of T if $\left\|x_{1}\right\|=\cdots=$ $\left\|x_{n}\right\|=1$ and $\left|T\left(x_{1}, \ldots, x_{n}\right)\right|=\|T\|$.

For $T \in \mathcal{L}\left({ }^{n} E\right)$, we define
$\operatorname{Norm}(T)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in E^{n}:\left(x_{1}, \ldots, x_{n}\right)\right.$ is a norming point of $\left.T\right\}$.
$\operatorname{Norm}(T)$ is called the norming set of T. Notice that $\left(x_{1}, \ldots, x_{n}\right) \in \operatorname{Norm}(T)$ if and only if $\left(\epsilon_{1} x_{1}, \ldots, \epsilon_{n} x_{n}\right) \in \operatorname{Norm}(T)$ for some $\epsilon_{k}= \pm 1(k=1, \ldots, n)$. Indeed, if $\left(x_{1}, \ldots, x_{n}\right) \in \operatorname{Norm}(T)$, then

$$
\left|T\left(\epsilon_{1} x_{1}, \ldots, \epsilon_{n} x_{n}\right)\right|=\left|\epsilon_{1} \cdots \epsilon_{n} T\left(x_{1}, \ldots, x_{n}\right)\right|=\left|T\left(x_{1}, \ldots, x_{n}\right)\right|=\|T\|
$$

which shows that $\left(\epsilon_{1} x_{1}, \ldots, \epsilon_{n} x_{n}\right) \in \operatorname{Norm}(T)$. If $\left(\epsilon_{1} x_{1}, \ldots, \epsilon_{n} x_{n}\right) \in \operatorname{Norm}(T)$ for some $\epsilon_{k}= \pm 1(k=1, \ldots, n)$, then

$$
\left(x_{1}, \ldots, x_{n}\right)=\left(\epsilon_{1}\left(\epsilon_{1} x_{1}\right), \ldots, \epsilon_{n}\left(\epsilon_{n} x_{n}\right)\right) \in \operatorname{Norm}(T)
$$

The following examples show that $\operatorname{Norm}(T)=\emptyset$ or an infinite set.
Examples. (a) Let

$$
T\left(\left(x_{i}\right)_{i \in \mathbb{N}},\left(y_{i}\right)_{i \in \mathbb{N}}\right)=\sum_{i=1}^{\infty} \frac{1}{2^{i}} x_{i} y_{i} \in \mathcal{L}_{s}\left({ }^{2} c_{0}\right) .
$$

We claim that $\operatorname{Norm}(T)=\emptyset$. Obviously, $\|T\|=1$. Assume that $\operatorname{Norm}(T) \neq \emptyset$. Let $\left(\left(x_{i}\right)_{i \in \mathbb{N}},\left(y_{i}\right)_{i \in \mathbb{N}}\right) \in \operatorname{Norm}(T)$. Then,

$$
1=\left|T\left(\left(x_{i}\right)_{i \in \mathbb{N}},\left(y_{i}\right)_{i \in \mathbb{N}}\right)\right| \leq \sum_{i=1}^{\infty} \frac{1}{2^{i}}\left|x_{i}\right|\left|y_{i}\right| \leq \sum_{i=1}^{\infty} \frac{1}{2^{i}}=1
$$

which shows that $\left|x_{i}\right|=\left|y_{i}\right|=1$ for all $i \in \mathbb{N}$. Hence, $\left(x_{i}\right)_{i \in \mathbb{N}},\left(y_{i}\right)_{i \in \mathbb{N}} \notin c_{0}$. This is a contradiction. Therefore, $\operatorname{Norm}(T)=\emptyset$.
(b) Let

$$
T\left(\left(x_{i}\right)_{i \in \mathbb{N}},\left(y_{i}\right)_{i \in \mathbb{N}}\right)=x_{1} y_{1} \in \mathcal{L}_{s}\left({ }^{2} c_{0}\right)
$$

Then,

$$
\begin{aligned}
\operatorname{Norm}(T)=\{ & \left(\left(\pm 1, x_{2}, x_{3}, \ldots\right),\left(\pm 1, y_{2}, y_{3}, \ldots\right)\right) \in c_{0} \times c_{0}:\left|x_{j}\right| \leq 1 \\
& \left.\left|y_{j}\right| \leq 1 \text { for } j \geq 2\right\}
\end{aligned}
$$

A mapping $P: E \rightarrow \mathbb{R}$ is a continuous n-homogeneous polynomial if there exists a continuous n-linear form L on the product $E \times \cdots \times E$ such that $P(x)=L(x, \ldots, x)$ for every $x \in E$. We denote by $\mathcal{P}\left({ }^{n} E\right)$ the Banach space of all continuous n-homogeneous polynomials from E into \mathbb{R} endowed with the norm $\|P\|=\sup _{\|x\|=1}|P(x)|$.

An element $x \in E$ is called a norming point of $P \in \mathcal{P}\left({ }^{n} E\right)$ if $\|x\|=1$ and $|P(x)|=\|P\|$. For $P \in \mathcal{P}\left({ }^{n} E\right)$, we define

$$
\operatorname{Norm}(P)=\{x \in E: x \text { is a norming point of } P\} .
$$

$\operatorname{Norm}(P)$ is called the norming set of P. Notice that $\operatorname{Norm}(P)=\emptyset$ or a finite set or an infinite set.
Kim [7] classify $\operatorname{Norm}(P)$ for every $P \in \mathcal{P}\left({ }^{2} l_{\infty}^{2}\right)$, where $l_{\infty}^{2}=\mathbb{R}^{2}$ with the supremum norm.

If $\operatorname{Norm}(T) \neq \emptyset, T \in \mathcal{L}\left({ }^{n} E\right)$ is called a norm attaining n-linear form and if $\operatorname{Norm}(P) \neq \emptyset, P \in \mathcal{P}\left({ }^{n} E\right)$ is called a norm attaining n-homogeneoue polynomial (See [3]).

For more details about the theory of multilinear mappings and polynomials on a Banach space, we refer to [4].

It seems to be natural and interesting to study about $\operatorname{Norm}(T)$ for $T \in$ $\mathcal{L}\left({ }^{n} E\right)$. For $m \in \mathbb{N}$, let $l_{1}^{m}:=\mathbb{R}^{m}$ with the the l_{1}-norm and $l_{\infty}^{2}=\mathbb{R}^{2}$ with the supremum norm. Notice that if $E=l_{1}^{m}$ or l_{∞}^{2} and $T \in \mathcal{L}\left({ }^{n} E\right), \operatorname{Norm}(T) \neq \emptyset$ since S_{E} is compact. $\operatorname{Kim}([8-10])$ classified $\operatorname{Norm}(T)$ for every $T \in \mathcal{L}_{s}\left({ }^{2} l_{\infty}^{2}\right)$, $\mathcal{L}_{s}\left({ }^{2} l_{1}^{2}\right)$ or $\mathcal{L}_{s}\left({ }^{3} l_{1}^{2}\right)$. Kim [6] classified the norming set of $T=(a, b, c, d) \in \mathcal{L}\left({ }^{2} l_{\infty}^{2}\right)$ in terms of its coefficients a, b, c and d, where $T\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=a x_{1} x_{2}+$ $b y_{1} y_{2}+c x_{1} y_{2}+d y_{1} x_{2}$.

Let

$$
\Omega=\{((1,1),(1,1)),((1,1),(1,-1)),((1,-1),(1,1)),((1,-1),(1,-1))\}
$$

In this paper we present another characterization of the norming set of $T \in$ $\mathcal{L}\left({ }^{2} l_{\infty}^{2}\right)$ in terms of $\operatorname{Norm}(T) \cap \Omega$.

2. Results

Let $T\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=a x_{1} x_{2}+b y_{1} y_{2}+c x_{1} y_{2}+d y_{1} x_{2} \in \mathcal{L}\left({ }^{2} l_{\infty}^{2}\right)$ for some $a, b, c, d \in \mathbb{R}$. For simplicity we denote $T=(a, b, c, d)$.

Theorem $2.1([6])$. Let $T=(a, b, c, d) \in \mathcal{L}\left({ }^{2} l_{\infty}^{2}\right)$ for some $a, b, c, d \in \mathbb{R}$. Then

$$
\|T\|=\max \{|a+b|+|c+d|,|a-b|+|c-d|\}
$$

Notice that if $\|T\|=1$, then $|a| \leq 1,|b| \leq 1,|c| \leq 1$ and $|d| \leq 1$.
Lemma 2.2 ([6]). Let $T=(a, b, c, d) \in \mathcal{L}\left({ }^{2} l_{\infty}^{2}\right)$ for some $a, b, c, d \in \mathbb{R}$. Then there exists $T^{\prime}=\left(a^{*}, b^{*}, c^{*}, d^{*}\right) \in \mathcal{L}\left({ }^{2} l_{\infty}^{2}\right)$ such that $a^{*}, b^{*}, c^{*}, d^{*} \in\{ \pm a, \pm b, \pm c$, $\pm d\}$ with $a^{*} \geq\left|b^{*}\right|$ and $a^{*} \geq c^{*} \geq d^{*} \geq 0$ and $\|T\|=\left\|T^{\prime}\right\|$.

Proof. If $a<0$, taking $-T$, we assume that $a \geq 0$. If $|b|>a$, we define $T_{1}=$ $(|b|, \operatorname{sign}(b) a, \operatorname{sign}(b) d, \operatorname{sign}(b) c)$. Then, $\left\|T_{1}\right\|=\|T\|$. Hence, we may assume that $a \geq|b|$. If $c<0$, we define $T_{2}=(a,-b,-c, d)$. Then, $\left\|T_{2}\right\|=\|T\|$. Hence, we may assume that $a \geq|b|, c>0$. If $d<0$, we define $T_{3}=(a,-b, c,-d)$. Then, $\left\|T_{3}\right\|=\|T\|$. Hence, we may assume that $a \geq|b|, c>0, d>0$. If $c<d$, we define $T_{4}=(a, b, d, c)$. Then, $\left\|T_{4}\right\|=\|T\|$. Hence, we may assume that $a \geq|b|$, $c \geq d$. If $a<c, b \geq 0$, we define $T_{5}=(c, d, a, b)$. Then, $\left\|T_{5}\right\|=\|T\|$. Hence, we may assume that $a \geq|b|, c \geq d$. If $a<c, b<0$, we define $T_{6}=(c,-d, a,-b)$. Then, $\left\|T_{6}\right\|=\|T\|$. Hence, we may assume that $a \geq|b|$ and $a \geq c \geq d \geq 0$. Therefore, we can find a bilinear form T^{\prime} which satisfies the conditions of the lemma.

Lemma 2.3. Let $n \in \mathbb{N}$ and $w_{j}, t_{j} \in \mathbb{R}$ for $j=1, \ldots, n$ be such that $\left|w_{j}\right| \leq 1$, $0 \leq t_{j} \leq 1$ and $\sum_{j=1}^{n} t_{j}=1$. Suppose that

$$
1=\left|\sum_{j=1}^{n} t_{j} w_{j}\right| .
$$

If $\left|w_{j_{0}}\right|<1$ for some $j_{0} \in\{1, \ldots, n\}$, then $t_{j_{0}}=0$.
Proof. Assume the contrary. It follows that

$$
\begin{aligned}
1 & =\left|\sum_{j=1}^{n} t_{j} w_{j}\right| \leq t_{j_{0}}\left|w_{j_{0}}\right|+\sum_{1 \leq j \neq j_{0} \leq n} t_{j}\left|w_{j}\right| \\
& <t_{j_{0}}+\sum_{1 \leq j \neq j_{0} \leq n} t_{j}\left|w_{j}\right|\left(\text { because } t_{j_{0}}>0 \text { and }\left|w_{j_{0}}\right|<1\right) \\
& \leq t_{j_{0}}+\sum_{1 \leq j \neq j_{0} \leq n} t_{j}=1
\end{aligned}
$$

which is a contradiction. Therefore, we complete the proof.
Theorem 2.4. Let $T \in \mathcal{L}\left({ }^{2} l_{\infty}^{2}\right)$ with $\|T\|=1$ and $a \geq|b|, a \geq c \geq d \geq 0$. Then
$\operatorname{Norm}(T) \subseteq\{(\pm(t(1,1)+(1-t)(1,-1)), \pm(s(1,1)+(1-s)(1,-1))): 0 \leq t, s \leq 1\}$.
Proof. Let

$$
\begin{aligned}
& B_{1}=\{t(0,1)+(1-t)(1,1): 0 \leq t \leq 1\} \\
& B_{2}=\{t(1,1)+(1-t)(1,-1): 0 \leq t \leq 1\} \\
& B_{3}=\{t(1,-1)+(1-t)(0,-1): 0 \leq t \leq 1\} .
\end{aligned}
$$

Let $(X, Y) \in \operatorname{Norm}(T)$. Without loss of generality we may assume that $X, Y \in$ $\bigcup_{1 \leq j \leq 3} B_{j}$.

Claim. $(X, Y) \in B_{2}$.
Suppose that $X \in B_{1}$. If $Y \in B_{1}$, then
$(*) 1=|T(X, Y)|=|T(t(0,1)+(1-t)(1,1), s(0,1)+(1-s)(1,1))|$

$$
\begin{aligned}
= & \mid t s T((0,1),(0,1))+t(1-s) T((0,1),(1,1)) \\
& \quad+(1-t) s T((1,1),(0,1))+(1-t)(1-s) T((1,1),(1,1)) \mid \\
\leq & t s|T((0,1),(0,1))|+t(1-s)|T((0,1),(1,1))| \\
& \quad+(1-t) s|T((1,1),(0,1))|+(1-t)(1-s)|T((1,1),(1,1))| \\
= & t s|b|+t(1-s)|b+d|+(1-t) s|b+c|+(1-t)(1-s)|a+b+c+d| \\
\leq & 1
\end{aligned}
$$

By Lemma 2.3, $t s=t(1-s)=(1-t) s=0$. Hence, $t=s=0$. Therefore, $X=Y=(1,1) \in B_{2}$.

If $Y \in B_{2}$, then

$$
\begin{aligned}
(*) 1= & |T(X, Y)|=|T(t(0,1)+(1-t)(1,1), s(1,1)+(1-s)(1,-1))| \\
= & \mid t s T((0,1),(1,1))+t(1-s) T((0,1),(1,-1)) \\
& \quad+(1-t) s T((1,1),(1,1))+(1-t)(1-s) T((1,1),(1,-1)) \mid \\
\leq & t s|T((0,1),(1,1))|+t(1-s)|T((0,1),(1,-1))| \\
& \quad+(1-t) s|T((1,1),(1,1))|+(1-t)(1-s)|T((1,1),(1,-1))| \\
= & t s|b+d|+t(1-s)|-b+d|+(1-t) s|a+b+c+d| \\
& \quad+(1-t)(1-s)|a-b-c+d| \leq 1 .
\end{aligned}
$$

By Lemma 2.3, $t s=t(1-s)=0$. Hence, $t=0$. Therefore, $X=(1,1), Y \in B_{2}$. If $Y \in B_{3}$, then

$$
\begin{aligned}
(*) 1= & |T(X, Y)|=|T(t(0,1)+(1-t)(1,1), s(1,-1)+(1-s)(0,-1))| \\
= & \mid t s T((0,1),(1,-1))+t(1-s) T((0,1),(0,-1)) \\
& +(1-t) s T((1,1),(1,-1))+(1-t)(1-s) T((1,1),(0,-1)) \mid \\
\leq & t s|T((0,1),(1,-1))|+t(1-s)|T((0,1),(0,-1))| \\
& \quad+(1-t) s|T((1,1),(1,-1))|+(1-t)(1-s)|T((1,1),(0,-1))| \\
= & t s|-b+d|+t(1-s)|b|+(1-t) s|a-b-c+d| \\
& +(1-t)(1-s)|-b-c| \leq 1 .
\end{aligned}
$$

By Lemma 2.3, $t s=t(1-s)=(1-t)(1-s)=0$. Hence, $t=0, s=1$. Therefore, $X=(1,1), Y=(1,-1) \in B_{2}$.

Suppose that $X \in B_{2}$.
If $Y \in B_{1}$, then
$(*) 1=|T(X, Y)|=|T(t(1,1)+(1-t)(1,-1), s(0,1)+(1-s)(1,1))|$

$$
\begin{aligned}
= & \mid t s T((1,1),(0,1))+t(1-s) T((1,1),(1,1)) \\
& \quad+(1-t) s T((1,-1),(0,1))+(1-t)(1-s) T((1,-1),(1,1)) \mid \\
\leq & t s|T((1,1),(0,1))|+t(1-s)|T((1,1),(1,1))| \\
& \quad+(1-t) s|T((1,-1),(0,1))|+(1-t)(1-s)|T((1,-1),(1,1))| \\
= & t s|b+c|+t(1-s)|a+b+c+d|+(1-t) s|-b+c| \\
& \quad+(1-t)(1-s)|a-b+c-d| \leq 1 .
\end{aligned}
$$

By Lemma 2.3, $t s=(1-t) s=0$. Hence, $s=0$. Therefore, $X, Y=(1,1) \in B_{2}$.

If $Y \in B_{3}$, then
$(*) 1=|T(X, Y)|=|T(t(1,1)+(1-t)(1,-1), s(1,-1)+(1-s)(0,-1))|$ $=\mid t s T((1,1),(1,-1))+t(1-s) T((1,1),(0,-1))$
$+(1-t) s T((1,-1),(1,-1))+(1-t)(1-s) T((1,-1),(0,-1))$ $\leq t s|T((1,1),(1,-1))|+t(1-s)|T((1,1),(0,-1))|$
$+(1-t) s|T((1,-1),(1,-1))|+(1-t)(1-s)|T((1,-1),(0,-1))|$ $=t s|a-b-c+d|+t(1-s)|-b-c|+(1-t) s|a+b-c-d|$ $+(1-t)(1-s)|b-c| \leq 1$.
By Lemma 2.3, $t(1-s)=(1-t)(1-s)=0$. Hence, $s=1$. Therefore, $X, Y=(1,-1) \in B_{2}$.

Suppose that $X \in B_{3}$.
If $Y \in B_{1}$, then

$$
\begin{aligned}
(*) 1= & |T(X, Y)|=|T(t(0,-1)+(1-t)(1,-1), s(0,1)+(1-s)(1,1))| \\
= & \mid t s T((0,-1),(0,1))+t(1-s) T((0,-1),(1,1)) \\
& \quad+(1-t) s T((1,-1),(0,1))+(1-t)(1-s) T((1,-1),(1,1)) \mid \\
\leq & t s|T((0,-1),(0,1))|+t(1-s)|T((0,-1),(1,1))| \\
& \quad+(1-t) s|T((1,-1),(0,1))|+(1-t)(1-s)|T((1,-1),(1,1))| \\
= & t s|b|+t(1-s)|b+d|+(1-t) s|-b+c| \\
& \quad+(1-t)(1-s)|a-b+c-d| \leq 1
\end{aligned}
$$

By Lemma 2.3, $t s=t(1-s)=(1-t) s=0$. Hence, $t=s=0$. Therefore, $X=(1,-1), Y=(1,1) \in B_{2}$.

If $Y \in B_{2}$, then
$(*) 1=|T(X, Y)|=|T(t(0,-1)+(1-t)(1,-1), s(1,1)+(1-s)(1,-1))|$

$$
\begin{aligned}
& =\mid t s T((0,-1),(1,1))+t(1-s) T((0,-1),(1,-1)) \\
& \quad \quad+(1-t) s T((1,-1),(1,1))+(1-t)(1-s) T((1,-1),(1,-1)) \mid \\
& \leq \\
& \quad t s|T((0,-1),(1,1))|+t(1-s)|T((0,-1),(1,-1))| \\
& \quad \quad+(1-t) s|T((1,-1),(1,1))|+(1-t)(1-s)|T((1,-1),(1,-1))| \\
& =t s|b+d|+t(1-s)|b-d|+(1-t) s|a-b+c-d| \\
& \quad \quad+(1-t)(1-s)|a+b-c-d| \leq 1
\end{aligned}
$$

By Lemma 2.3, $t s=t(1-s)=0$. Hence, $t=0$. Therefore, $X=(1,-1), Y \in B_{2}$. If $Y \in B_{3}$, then
$(*) 1=|T(X, Y)|=|T(t(0,-1)+(1-t)(1,-1), s(1,-1)+(1-s)(0,-1))|$

$$
\begin{aligned}
= & \mid t s T((0,-1),(1,-1))+t(1-s) T((0,-1),(0,-1)) \\
& \quad+(1-t) s T((1,-1),(1,-1))+(1-t)(1-s) T((1,-1),(0,-1)) \mid \\
\leq & t s|T((0,-1),(1,-1))|+t(1-s)|T((0,-1),(0,-1))| \\
& \quad+(1-t) s|T((1,-1),(1,-1))|+(1-t)(1-s)|T((1,-1),(0,-1))| \\
= & t s|b-d|+t(1-s)|b|+(1-t) s|a+b-c-d| \\
& \quad+(1-t)(1-s)|b-c| \leq 1 .
\end{aligned}
$$

By Lemma 2.3, $t s=t(1-s)=(1-t)(1-s)=0$. Hence, $t=0, s=1$. Therefore, $X=Y=(1,-1) \in B_{2}$. We complete the proof.

Let

$$
\begin{aligned}
l_{1} & =T((1,1),(1,1)), l_{2}=T((1,-1),(1,1)) \\
l_{3} & =T((1,1),(1,-1)), l_{4}=T((1,-1),(1,-1))
\end{aligned}
$$

If $T \in \mathcal{L}\left({ }^{2} l_{\infty}^{2}\right)$ with $\|T\|=1$ and $a \geq|b|, a \geq c \geq d \geq 0$, then $l_{j} \geq 0$ for $j=1,2$.
Kim [6] classified the norming set of $T=(a, b, c, d) \in \mathcal{L}\left({ }^{2} l_{\infty}^{2}\right)$ in terms of its coefficients a, b, c and d, where $T\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=a x_{1} x_{2}+b y_{1} y_{2}+c x_{1} y_{2}+$ $d y_{1} x_{2}$. We present an another characterization of $\operatorname{Norm}(T)$ whose proofs are more systematic than those of [6].

We are in position to prove the main result of this paper.
Theorem 2.5. Let $T \in \mathcal{L}\left({ }^{2} l_{\infty}^{2}\right)$ with $\|T\|=1$ and $a \geq|b|, a \geq c \geq d \geq 0$. Let
$\Omega=\{((1,1),(1,1)),((1,1),(1,-1)),((1,-1),(1,1)),((1,-1),(1,-1))\}$.
We consider four cases:
Case 1. $|\operatorname{Norm}(T) \cap \Omega|=1$

$$
\operatorname{Norm}(T)=\{(\pm X, \pm Y):(X, Y) \in \operatorname{Norm}(T) \cap \Omega\}
$$

Case 2. $|\operatorname{Norm}(T) \cap \Omega|=2$
Suppose that

$$
\operatorname{Norm}(T) \cap \Omega=\{((1,1),(1,1)),((1,1),(1,-1))\}
$$

If $l_{3}=1$, then

$$
\operatorname{Norm}(T)=\{(\pm(1,1), \pm(1,2 t-1)): 0 \leq t \leq 1\}
$$

If $l_{3}=-1$, then

$$
\operatorname{Norm}(T)=\{(\pm(1,1), \pm(1,1)),(\pm(1,1), \pm(1,-1))\}
$$

Suppose that

$$
\operatorname{Norm}(T) \cap \Omega=\{((1,1),(1,1)),((1,-1),(1,1))\}
$$

Then

$$
\operatorname{Norm}(T)=\{(\pm(1,2 t-1), \pm(1,1)): 0 \leq t \leq 1\}
$$

Suppose that

$$
\begin{aligned}
& \operatorname{Norm}(T) \cap \Omega=\{((1,1),(1,1)),((1,-1),(1,-1))\} \\
& \text { or }\{((1,1),(1,-1)),((1,-1),(1,1))\} .
\end{aligned}
$$

Then

$$
\operatorname{Norm}(T)=\{(\pm X, \pm Y):(X, Y) \in \operatorname{Norm}(T) \cap \Omega\}
$$

Suppose that

$$
\operatorname{Norm}(T) \cap \Omega=\{((1,1),(1,-1)),((1,-1),(1,-1))\}
$$

If $l_{3}=l_{4}$, then

$$
\operatorname{Norm}(T)=\{(\pm(1,2 t-1), \pm(1,-1)): 0 \leq t \leq 1\}
$$

If $l_{3} \neq l_{4}$, then

$$
\operatorname{Norm}(T)=\{(\pm(1,1), \pm(1,-1)),(\pm(1,-1), \pm(1,-1))\}
$$

Suppose that

$$
\operatorname{Norm}(T) \cap \Omega=\{((1,-1),(1,1)), \quad((1,-1),(1,-1))\}
$$

If $l_{4}=1$, then

$$
\operatorname{Norm}(T)=\{(\pm(1,-1), \pm(1,2 t-1)): 0 \leq t \leq 1\}
$$

If $l_{4}=-1$, then

$$
\operatorname{Norm}(T)=\{(\pm(1,-1), \pm(1,1)),(\pm(1,-1), \pm(1,-1))\}
$$

Case 3. $|\operatorname{Norm}(T) \cap \Omega|=3$
Suppose that $((1,1),(1,1)) \notin \operatorname{Norm}(T) \cap \Omega$.
If $l_{3} l_{4}=1=l_{4}$, then
$\operatorname{Norm}(T)=\{(\pm(1,-1), \pm(1,2 t-1)),(\pm(1,2 t-1), \pm(1,-1)): 0 \leq t \leq 1\}$.
If $l_{3} l_{4}=1=-l_{4}$, then

$$
\begin{aligned}
\operatorname{Norm}(T)=\{ & (\pm(1,-1), \pm(1,1)),(\pm(1,-1), \pm(1,-1)) \\
& (\pm(1,2 t-1), \pm(1,-1)): 0 \leq t \leq 1\}
\end{aligned}
$$

If $l_{3} l_{4}=-1=l_{4}$, then

$$
\operatorname{Norm}(T)=\{(\pm(1,-1), \pm(1,2 t-1)),(\pm(1,-1), \pm(1,-1))
$$

$$
(\pm(1,1), \pm(1,-1))\}
$$

If $l_{3} l_{4}=-1=-l_{4}$, then
$\operatorname{Norm}(T)=\{(\pm(1,-1), \pm(1,1)),(\pm(1,-1), \pm(1,-1)),(\pm(1,1), \pm(1,-1))\}$.
Suppose that $((1,1),(1,-1)) \notin \operatorname{Norm}(T) \cap \Omega$.
If $l_{4}=1$, then
$\operatorname{Norm}(T)=\{(\pm(1,-1), \pm(1,2 t-1)),(\pm(1,2 t-1), \pm(1,1)): 0 \leq t \leq 1\}$. If $l_{4}=-1$, then

$$
\begin{aligned}
\operatorname{Norm}(T)=\{ & (\pm(1,-1), \pm(1,1)),(\pm(1,-1), \pm(1,-1)) \\
& (\pm(1,2 t-1), \pm(1,1)): 0 \leq t \leq 1\}
\end{aligned}
$$

Suppose that $((1,-1),(1,1)) \notin \operatorname{Norm}(T) \cap \Omega$.
If $l_{3} l_{4}=1=l_{4}$, then
$\operatorname{Norm}(T)=\{(\pm(1,1), \pm(1,2 t-1)),(\pm(1,2 t-1), \pm(1,-1)): 0 \leq t \leq 1\}$. If $l_{3} l_{4}=1=-l_{4}$, then
$\operatorname{Norm}(T)=\{(\pm(1,1), \pm(1,1)),(\pm(1,1), \pm(1,-1)),(\pm(1,2 t-1), \pm(1,-1)):$

$$
0 \leq t \leq 1\}
$$

If $l_{3} l_{4}=-1=-l_{4}$, then
$\operatorname{Norm}(T)=\{(\pm(1,1), \pm(1,1)),(\pm(1,-1), \pm(1,-1)),(\pm(1,1), \pm(1,-1))\}$.
If $l_{3} l_{4}=-1=l_{4}$, then
$\operatorname{Norm}(T)=\{(\pm(1,1), \pm(1,2 t-1)),(\pm(1,1), \pm(1,-1)),(\pm(1,-1), \pm(1,-1))\}$.
Suppose that $((1,-1),(1,-1)) \notin \operatorname{Norm}(T) \cap \Omega$.
If $l_{3}=1$, then
$\operatorname{Norm}(T)=\{(\pm(1,1), \pm(1,2 t-1)),(\pm(1,2 t-1), \pm(1,1)): 0 \leq t \leq 1\}$. If $l_{3}=-1$, then

$$
\begin{aligned}
\operatorname{Norm}(T)=\{ & (\pm(1,1), \pm(1,1)),(\pm(1,1), \pm(1,-1)) \\
& (\pm(1,2 t-1), \pm(1,1)): 0 \leq t \leq 1\}
\end{aligned}
$$

Case 4. $|\operatorname{Norm}(T) \cap \Omega|=4$ If $l_{j}=1$ for $j=3,4$, then

$$
\operatorname{Norm}(T)=\{(\pm(1,2 t-1), \pm(1,2 s-1)): 0 \leq t, s \leq 1\}
$$

$$
\begin{aligned}
& \text { If } l_{3}=-1=-l_{4} \text {, then } \\
& \operatorname{Norm}(T)=\{ \pm((1,1),(1,-1)),(\pm(1,-1), \pm(1,2 t-1)), \\
& (\pm(1,2 t-1), \pm(1,1)): 0 \leq t \leq 1\} . \\
& \text { If } l_{3}=1=-l_{4} \text {, then } \\
& \begin{aligned}
\operatorname{Norm}(T)=\{ & \pm((1,-1),(1,-1)),(\pm(1,1), \pm(1,2 t-1)), \\
& (\pm(1,2 t-1), \pm(1,1)): 0 \leq t \leq 1\} .
\end{aligned} \\
& \text { If } l_{3}=-1=l_{4} \text {, then } \\
& \operatorname{Norm}(T)=\{ \pm((1,1),(1,1)), \pm((1,-1),(1,1)), \\
& (\pm(1,2 t-1), \pm(1,-1)): 0 \leq t \leq 1\} .
\end{aligned}
$$

Proof. Let $(X, Y) \in \operatorname{Norm}(T)$. By Theorem 2.4, we may assume that $X=$ $t(1,1)+(1-t)(1,-1)$ and $Y=s(1,1)+(1-s)(1,-1)$ for $0 \leq t, s \leq 1$. It follows that
$(*) 1=|T(X, Y)|=|T(t(1,1)+(1-t)(1,-1), s(1,1)+(1-s)(1,-1))|$

$$
\begin{aligned}
= & \mid t s T((1,1),(1,1))+t(1-s) T((1,1),(1,-1)) \\
& \quad+(1-t) s T((1,-1),(1,1))+(1-t)(1-s) T((1,-1),(1,-1)) \mid \\
\leq & t s|T((1,1),(1,1))|+t(1-s)|T((1,1),(1,-1))| \\
& +(1-t) s|T((1,-1),(1,1))|+(1-t)(1-s)|T((1,-1),(1,-1))| \leq 1 .
\end{aligned}
$$

Case 1. $|\operatorname{Norm}(T) \cap \Omega|=1$
Suppose that $\operatorname{Norm}(T) \cap \Omega=\{((1,1),(1,1))\}$.
By (*) and Lemma 2.3,

$$
t(1-s)=(1-t) s=(1-t)(1-s)=0
$$

Hence, $t=s=1$ and

$$
\operatorname{Norm}(T)=\{(\pm(1,1), \pm(1,1))\}
$$

Suppose that $\operatorname{Norm}(T) \cap \Omega=\{((1,1),(1,-1))\}$.
By (*) and Lemma 2.3,

$$
t s=(1-t) s=(1-t)(1-s)=0
$$

Hence, $t=1, s=0$ and

$$
\operatorname{Norm}(T)=\{(\pm(1,1), \pm(1,-1))\}
$$

Suppose that $\operatorname{Norm}(T) \cap \Omega=\{((1,-1),(1,1))\}$.

By (*) and Lemma 2.3,

$$
t s=t(1-s)=(1-t)(1-s)=0
$$

Hence, $t=0, s=1$ and

$$
\operatorname{Norm}(T)=\{(\pm(1,-1), \pm(1,1))\}
$$

Suppose that $\operatorname{Norm}(T) \cap \Omega=\{((1,-1),(1,-1))\}$.
By (*) and Lemma 2.3,

$$
t s=t(1-s)=(1-t) s=0
$$

Hence, $t=s=0$ and

$$
\operatorname{Norm}(T)=\{(\pm(1,-1), \pm(1,-1))\}
$$

Case 2. $|\operatorname{Norm}(T) \cap \Omega|=2$
Suppose that

$$
\operatorname{Norm}(T) \cap \Omega=\{((1,1),(1,1)),((1,1),(1,-1))\} .
$$

By (*) and Lemma 2.3,

$$
(1-t) s=(1-t)(1-s)=0
$$

Hence, $t=1$ and
$\operatorname{Norm}(T)=\left\{\left(\pm(1,1), \pm\left(t(1,1)+(1-t) \operatorname{sign}\left(l_{3}\right)(1,-1)\right)\right): 0 \leq t \leq 1\right\}$.
If $l_{3}=1$, then

$$
\operatorname{Norm}(T)=\{(\pm(1,1), \pm(t(1,1)+(1-t)(1,-1))): 0 \leq t \leq 1\}
$$

If $l_{3}=-1$, then

$$
\operatorname{Norm}(T)=\{(\pm(1,1), \pm(1,1)),(\pm(1,1), \pm(1,-1))\}
$$

Suppose that

$$
\operatorname{Norm}(T) \cap \Omega=\{((1,1),(1,1)), \quad((1,-1),(1,1))\}
$$

By (*) and Lemma 2.3,

$$
t(1-s)=(1-t)(1-s)=0
$$

Hence, $s=1$ and

$$
\operatorname{Norm}(T)=\{(\pm(t+(1-t)(1,-1), \pm(1,1)): 0 \leq t \leq 1\}
$$

Suppose that

$$
\begin{aligned}
\operatorname{Norm}(T) \cap \Omega & =\{((1,1),(1,1)),((1,-1),(1,-1))\} \\
& \text { or }\{((1,1),(1,-1)),((1,-1),(1,1))\} .
\end{aligned}
$$

By (*) and Lemma 2.3,

$$
t(1-s)=(1-t) s=0
$$

If $t=0$, then $((1,-1),(1,-1)) \in \operatorname{Norm}(T)$. If $s=1$, then $((1,1),(1,1)) \in$ $\operatorname{Norm}(T)$. Hence,

$$
\operatorname{Norm}(T)=\{(\pm(1,1), \pm(1,1)),(\pm(1,-1), \pm(1,-1))\}
$$

Suppose that

$$
\operatorname{Norm}(T) \cap \Omega=\{((1,1),(1,-1)),((1,-1),(1,-1))\}
$$

By (*) and Lemma 2.3,

$$
t s=(1-t) s=0
$$

If $t=0$, then $((1,-1),(1,-1)) \in \operatorname{Norm}(T)$. If $s=0$, then

$$
\left(t \operatorname{sign}\left(l_{3}\right)(1,1)+(1-t) \operatorname{sign}\left(l_{4}\right)(1,-1),(1,-1)\right) \in \operatorname{Norm}(T)
$$

If $l_{3}=l_{4}$, then

$$
\operatorname{Norm}(T)=\{(\pm(t(1,1)+(1-t)(1,-1), \pm(1,-1)): 0 \leq t \leq 1\}
$$

If $l_{3} \neq l_{4}$, then

$$
\operatorname{Norm}(T)=\{(\pm(1,1), \pm(1,-1)),(\pm(1,-1), \pm(1,-1))\}
$$

Suppose that

$$
\operatorname{Norm}(T) \cap \Omega=\{((1,-1),(1,1)),((1,-1),(1,-1))\}
$$

By (*) and Lemma 2.3,

$$
t s=t(1-s)=0
$$

Hence, $t=0$ and
$\operatorname{Norm}(T)=\left\{\left(\pm(1,-1), \pm\left(t(1,1)+(1-t) \operatorname{sign}\left(l_{4}\right)(1,-1)\right)\right): 0 \leq t \leq 1\right\}$.
If $l_{4}=1$, then

$$
\operatorname{Norm}(T)=\{(\pm(1,-1), \pm(t(1,1)+(1-t)(1,-1))): 0 \leq t \leq 1\}
$$

If $l_{4}=-1$, then

$$
\operatorname{Norm}(T)=\{(\pm(1,-1), \pm(1,1)),(\pm(1,-1), \pm(1,-1))\}
$$

Case 3. $|\operatorname{Norm}(T) \cap \Omega|=3$
Suppose that $((1,1),(1,1)) \notin \operatorname{Norm}(T) \cap \Omega$.
By $(*)$ and Lemma 2.3, $t s=0$. If $t=0$, then

$$
\left((1,-1), t(1,1)+(1-t) \operatorname{sign}\left(l_{4}\right)(1,-1)\right) \in \operatorname{Norm}(T)
$$

If $s=0$, then

$$
\left(t \operatorname{sign}\left(l_{3}\right)(1,1)+(1-t) \operatorname{sign}\left(l_{4}\right)(1,-1),(1,-1)\right) \in \operatorname{Norm}(T)
$$

If $l_{3} l_{4}=1=l_{4}$, then

$$
\begin{aligned}
\operatorname{Norm}(T)=\{ & (\pm(1,-1), \pm(t(1,1)+(1-t)(1,-1))) \\
& (\pm(t(1,1)+(1-t)(1,-1)), \pm(1,-1)): 0 \leq t \leq 1\}
\end{aligned}
$$

If $l_{3} l_{4}=1=-l_{4}$, then

$$
\begin{aligned}
\operatorname{Norm}(T)=\{ & (\pm(1,-1), \pm(1,1)),(\pm(1,-1), \pm(1,-1)) \\
& (\pm(t(1,1)+(1-t)(1,-1)), \pm(1,-1)): 0 \leq t \leq 1\}
\end{aligned}
$$

If $l_{3} l_{4}=-1=l_{4}$, then

$$
\begin{aligned}
\operatorname{Norm}(T)=\{ & (\pm(1,-1), \pm(t(1,1)+(1-t)(1,-1))) \\
& (\pm(1,-1), \pm(1,-1)),(\pm(1,1), \pm(1,-1))\}
\end{aligned}
$$

If $l_{3} l_{4}=-1=-l_{4}$, then
$\operatorname{Norm}(T)=\{(\pm(1,-1), \pm(1,1))(\pm(1,-1), \pm(1,-1)),(\pm(1,1), \pm(1,-1))\}$.
Suppose that $((1,1),(1,-1)) \notin \operatorname{Norm}(T) \cap \Omega$.
If $l_{4}=1$, then

$$
\begin{aligned}
\operatorname{Norm}(T)=\{ & (\pm(1,-1), \pm(t(1,1)+(1-t)(1,-1))) \\
& (\pm(t(1,1)+(1-t)(1,-1)), \pm(1,1)): 0 \leq t \leq 1\}
\end{aligned}
$$

If $l_{4}=-1$, then

$$
\begin{aligned}
\operatorname{Norm}(T)=\{ & (\pm(1,-1), \pm(1,1)),(\pm(1,-1), \pm(1,-1)) \\
& (\pm(t(1,1)+(1-t)(1,-1)), \pm(1,1)): 0 \leq t \leq 1\}
\end{aligned}
$$

Suppose that $((1,-1),(1,1)) \notin \operatorname{Norm}(T) \cap \Omega$.
By $(*)$ and Lemma 2.3, $(1-t) s=0$. If $t=1$, then

$$
\left((1,1), t(1,1)+(1-t) \operatorname{sign}\left(l_{3}\right)(1,-1)\right) \in \operatorname{Norm}(T)
$$

If $s=0$, then

$$
\left(t \operatorname{sign}\left(l_{3}\right)(1,1)+(1-t) \operatorname{sign}\left(l_{4}\right)(1,-1),(1,-1)\right) \in \operatorname{Norm}(T)
$$

If $l_{3} l_{4}=1=l_{4}$, then

$$
\operatorname{Norm}(T)=\{(\pm(1,1), \pm(t(1,1)+(1-t)(1,-1)))
$$

$$
(\pm(t(1,1)+(1-t)(1,-1)), \pm(1,-1)): 0 \leq t \leq 1\}
$$

If $l_{3} l_{4}=1=-l_{4}$, then

$$
\begin{aligned}
\operatorname{Norm}(T)=\{ & (\pm(1,1), \pm(1,1)),(\pm(1,1), \pm(1,-1)), \\
& (\pm(t(1,1)+(1-t)(1,-1)), \pm(1,-1)): 0 \leq t \leq 1\}
\end{aligned}
$$

If $l_{3} l_{4}=-1=-l_{4}$, then
$\operatorname{Norm}(T)=\{(\pm(1,1), \pm(1,1))(\pm(1,-1), \pm(1,-1)),(\pm(1,1), \pm(1,-1))\}$.
If $l_{3} l_{4}=-1=l_{4}$, then

$$
\begin{aligned}
\operatorname{Norm}(T)=\{ & (\pm(1,1), \pm(t(1,1)+(1-t)(1,-1))) \\
& (\pm(1,1), \pm(1,-1)),(\pm(1,-1), \pm(1,-1))\}
\end{aligned}
$$

Suppose that $((1,-1),(1,-1)) \notin \operatorname{Norm}(T) \cap \Omega$.
By $(*)$ and Lemma 2.3, $(1-t)(1-s)=0$. If $t=1$, then

$$
\left((1,1), t(1,1)+(1-t) \operatorname{sign}\left(l_{3}\right)(1,-1)\right) \in \operatorname{Norm}(T)
$$

If $s=1$, then

$$
(t(1,1)+(1-t)(1,-1),(1,1)) \in \operatorname{Norm}(T)
$$

If $l_{3}=1$, then

$$
\begin{aligned}
\operatorname{Norm}(T)=\{ & (\pm(1,1), \pm(t(1,1)+(1-t)(1,-1))) \\
& (\pm(t(1,1)+(1-t)(1,-1)), \pm(1,1)): 0 \leq t \leq 1\}
\end{aligned}
$$

If $l_{3}=-1$, then

$$
\begin{aligned}
\operatorname{Norm}(T)=\{ & (\pm(1,1), \pm(1,1)),(\pm(1,1), \pm(1,-1)) \\
& (\pm(t(1,1)+(1-t)(1,-1)), \pm(1,1)): 0 \leq t \leq 1\}
\end{aligned}
$$

Case 4. $|\operatorname{Norm}(T) \cap \Omega|=4$
By $(*)$ and Lemma 2.3, if $l_{j}=1$ for $j=3,4$, then

$$
\begin{aligned}
\operatorname{Norm}(T)=\{ & (\pm(t(1,1)+(1-t)(1,-1)), \pm(s(1,1)+(1-s)(1,-1))): \\
& 0 \leq t, s \leq 1\} .
\end{aligned}
$$

Suppose that $l_{3}=-1=-l_{4}$. Then $t(1-s)=0$ or 1 . Suppose that $t(1-s)=0$.
If $t=0$, then

$$
((1,-1), t(1,1)+(1-t)(1,-1)) \in \operatorname{Norm}(T)
$$

If $s=1$, then

$$
(t(1,1)+(1-t)(1,-1),(1,1)) \in \operatorname{Norm}(T)
$$

Suppose that $t(1-s)=1$. Then $t=1, s=0$ and

$$
((1,1),(1,-1)) \in \operatorname{Norm}(T)
$$

Hence,

$$
\begin{aligned}
\operatorname{Norm}(T)=\{ & \pm((1,1),(1,-1)),(\pm(1,-1), \pm(t(1,1)+(1-t)(1,-1))) \\
& (\pm(t(1,1)+(1-t)(1,-1)), \pm(1,1)): 0 \leq t \leq 1\}
\end{aligned}
$$

Suppose that $l_{3}=1=-l_{4}$.
Notice that $(1-t)(1-s)=0$ or 1 . Suppose that $(1-t)(1-s)=0$. If $t=1$, then

$$
((1,1), t(1,1)+(1-t)(1,-1)) \in \operatorname{Norm}(T)
$$

If $s=1$, then

$$
(t(1,1)+(1-t)(1,-1),(1,1)) \in \operatorname{Norm}(T)
$$

Suppose that $(1-t)(1-s)=1$. Then $t=s=0$ and

$$
((1,-1),(1,-1)) \in \operatorname{Norm}(T)
$$

Hence,
$\operatorname{Norm}(T)=\{ \pm((1,-1),(1,-1)),(\pm(1,1), \pm(t(1,1)+(1-t)(1,-1)))$,

$$
(\pm(t(1,1)+(1-t)(1,-1)), \pm(1,1)): 0 \leq t \leq 1\}
$$

Suppose that $l_{3}=-1=l_{4}$.
Notice that $t s+(1-t) s=0$ or 1 . Suppose that $t s+(1-t) s=0$. Then $t s=(1-t) s=0$. If $t=0$, then

$$
((1,-1),(1,-1)) \in \operatorname{Norm}(T)
$$

If $s=0$, then

$$
((1,1),(1,-1)),((1,-1),(1,-1)) \in \operatorname{Norm}(T)
$$

Suppose that $t s+(1-t) s=1$. Then $t(1-s)=(1-t)(1-s)=0$. If $t=0$, then

$$
((1,-1),(1,1)) \in \operatorname{Norm}(T)
$$

If $s=1$, then

$$
((1,1),(1,-1)),((1,1),(1,1)) \in \operatorname{Norm}(T)
$$

Hence,

$$
\begin{aligned}
\operatorname{Norm}(T)=\{ & \pm((1,1),(1,1)), \pm((1,-1),(1,1)), \\
& (\pm(t(1,1)+(1-t)(1,-1)), \pm(1,-1)): 0 \leq t \leq 1\}
\end{aligned}
$$

We complete the proof.

References

[1] R. M. Aron, C. Finet, and E. Werner, Some remarks on norm-attaining n-linear forms, in Function spaces (Edwardsville, IL, 1994), 19-28, Lecture Notes in Pure and Appl. Math., 172, Dekker, New York, 1995.
[2] E. Bishop and R. R. Phelps, A proof that every Banach space is subreflexive, Bull. Amer. Math. Soc. 67 (1961), 97-98. https://doi.org/10.1090/S0002-9904-1961-10514-4
[3] Y. S. Choi and S. G. Kim, Norm or numerical radius attaining multilinear mappings and polynomials, J. London Math. Soc. (2) 54 (1996), no. 1, 135-147. https://doi. org/10.1112/jlms/54.1.135
[4] S. Dineen, Complex analysis on infinite-dimensional spaces, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 1999. https://doi.org/10.1007/ 978-1-4471-0869-6
[5] M. Jiménez Sevilla and R. Payá, Norm attaining multilinear forms and polynomials on preduals of Lorentz sequence spaces, Studia Math. 127 (1998), no. 2, 99-112. https: //doi.org/10.4064/sm-127-2-99-112
[6] S. G. Kim, The norming set of a bilinear form on l_{∞}^{2}, Comment. Math. 60 (2020), no. 1-2, 37-63.
[7] S. G. Kim, The norming set of a polynomial in $\mathcal{P}\left({ }^{2} l_{\infty}^{2}\right)$, Honam Math. J. 42 (2020), no. 3, 569-576. https://doi.org/10.5831/HMJ.2020.42.3.569
[8] S. G. Kim, The norming set of a symmetric bilinear form on the plane with the supremum norm, Mat. Stud. 55 (2021), no. 2, 171-180. https://doi.org/10.30970/ms.55. 2.171-180
[9] S. G. Kim, The norming set of a bilinear form on the plane with the l_{1}-norm, Preprint.
[10] S. G. Kim, The norming set of a symmetric 3-linear form on the plane with the l_{1}-norm, New Zealand J. Math. 51 (2021), 95-108.

Sung Guen Kim
Department of Mathematics
Kyungpook National University
Daegu 41566, Korea
Email address: sgk317@knu.ac.kr

