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LIOUVILLE THEOREMS FOR THE MULTIDIMENSIONAL

FRACTIONAL BESSEL OPERATORS

Vanesa Galli, Sandra Molina, and Alejandro Quintero

Abstract. In this paper, we establish Liouville type theorems for the

fractional powers of multidimensional Bessel operators extending the re-
sults given in [6]. In order to do this, we consider the distributional point

of view of fractional Bessel operators studied in [12].

1. Introduction

Bessel operators appear in the setting of harmonic analysis related to Hankel
transformations. These operators arise when we consider the Laplacian opera-
tor in polar coordinates. In order to establish Liouville type theorems for the
fractional Bessel operators, we will generalize the results obtained in [12] to the
n-dimensional case. The multidimensional Bessel operators in Rn+ = (0,∞)n

are given by

(1.1) ∆λ =

n∑
i=1

(
− ∂2

∂x2
i

+
λi(λi − 1)

x2
i

)
and

(1.2) Bλ =

n∑
i=1

(
− ∂2

∂x2
i

− 2λi
x

∂

∂xi

)
,

where λ ∈ Rn, λ = (λ1, . . . , λn) and λi > 0, which are related through

(1.3) ∆λ = xλBλx
−λ.

The fractional Bessel operator ∆α
λ , 0 < α < 1, was studied in [2] in the setting of

Holder spaces. In this work were studied global Holder and Schauder estimates
for a fractional Bessel equation.

The fractional powers of (1.1) and (1.2) were studied in [12] for the one
dimensional case using the similarity relation (1.3). This work is based on the
classical theory of fractional powers initially developed by Balakrishnan in [1].
Previously in [10], the powers of the Laplace operator had been studied in the
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Balakrishnan setting. It should be noted that Balakrishnan representation of
fractional powers is equivalent to semigroup representation, as can be seen in
[9, Theorem 3.2.2].

Let X and Y be Banach spaces. Two linear operators A and B, A : D(A) ⊂
X → X and B : D(B) ⊂ Y → Y are similar if there exists an isomorphism T :
X → Y with inverse T−1 : Y → X such that D(B) = {x ∈ Y : T−1x ∈ D(A)}
given by

(1.4) B = TAT−1.

Similar operators have the same spectral properties and also that of being
non-negative if one of them has this property. Thus, their powers are similar
operators and verify the same similarity relation, so

Bα = TAαT−1.

In this work, we generalize the results obtained in [12] to the n-dimensional case
obtaining the fractional powers of Bessel operators (1.1) and (1.2) in weighted
Lebesgue spaces and in distributional spaces. As in [12], we first study the non-
negativity of Bessel operator (1.1) in suitable weighted Lebesgue spaces. By
similarity we obtain the non-negativity of (1.2) in the corresponding Lebesgue
space. Analogously to the one-dimensional case, we construct a locally convex
space B in which ∆λ is continuous and non-negative. We considered the dual
space B′ with the strong topology and obtained non-negativity of ∆λ in this
distributional space. B′ is contained in the distributional Zemanian space and
contain the weighted Lebesgue spaces in which non-negativity was studied.
Consequently, if we denote with ∆λ,B′ the Bessel operator with domain B′, we
can consider the powers ∆α

λ,B′ with Reα > 0 and it is verified the following
relation inherited from the selfadjuncture of ∆λ

(∆α
λu, φ) = (u,∆α

λφ)

for φ ∈ B and u ∈ B′.
In [6], a Liouville-type theorem was studied for a certain general class of

Bessel-type operators. This class of operators contains as a particular case the
Bessel operator (1.1). The Liouville theorem applied to this operator states
that: if u is a Zemanian distribution that verifies that ∆λu = 0, then u is a
polynomial. This property is analogous to the classical result that establishes
that any harmonic tempered distribution is a polynomial. In [3], [4], [8] and
[18] different versions of Liouville theorem for the fractional Laplacian were
studied.

This work aims to give a proof for the following Liouville theorems for the
distributional fractional Bessel operators:

Theorem 1.1. Let u ∈ B′ and α ∈ C with Reα > 0. If ∆α
λ,B′u = 0, then there

exists a polynomial p such that u = xλp[x2
1, . . . , x

2
n].

For the study of the powers of Bessel operator given by (1.2) we introduce
a locally convex space F . This space verifies that its dual space F ′ with the
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strong topology is a suitable distributional space for the study of fractional
powers Bαλ,F ′ and from similarity we conclude the following result.

Theorem 1.2. Let u ∈ F ′ and α ∈ C with Reα > 0. If Bαλ,F ′u = 0, then

there exists a polynomial p such that u = x2λp[x2
1, . . . , x

2
n].

This paper is organized as follows. In Section 2, we summarize basic results
related to harmonic analysis in the Hankel setting. Section 3 contains a brief
review of non-negative operators in Banach and in locally convex spaces and
properties of fractional powers of similar operators. In Sections 4, 5 and 6, we
study the non-negativity of Bessel operators (1.1) and (1.2). Finally, Sections
6 and 7 contain Liouville’s theorems for both fractional Bessel operators.

2. Preliminaries

In this section, we introduce the Lebesgue and distributional spaces neces-
sary for our purposes.

We now present some notational conventions that will allow us to simplify
the presentation of our results. Let Rn be the n-dimensional Euclidean space
with ‖ · ‖ the Euclidean norm, and Rn+ = (0,∞)n and N0 = N ∪ {0}. For any
n-tuple k = (k1, . . . , kn) ∈ Nn0 we define its length to be |k| = k1 + · · ·+ kn.

If x ∈ Rn and β ∈ Rn, we define

(2.1) xβ = xβ1

1 · · ·xβnn .

In particular if a ∈ R, β ∈ Nn0 , aβ means

(2.2) aβ = aβ1 · · · aβn = a|β|.

For α ∈ R, let α = (α, . . . , α), then for a ∈ R and x ∈ Rn

(2.3) aα = (an)α and xα = xα1 · · ·xαn = xα.

If β = (β1, . . . , βn) ∈ Nn0 and α ∈ R means

(2.4) β + α = (β1 + α, . . . , βn + α) = β +α.

If k = (k1, . . . , kn) ∈ Nn0 , as usual Dk means Dk = Dk1
1 · · ·Dkn

n with Dj =
∂
∂xj

. We shall write

(2.5) T k = T knn T
kn−1

n−1 · · ·T
k1
1 ,

where Ti =
(
x−1
i

∂
∂xi

)
and T ji denotes the j-times composition of the operator

Ti.

Remark 2.1. Let k be a multi-index and θ, ϕ differentiable functions up to order
|k|. The following equality is valid

(2.6) T k{θ · ϕ} =

k∑
j=0

(
k

j

)
T k−jθ · T jϕ,
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where “ · ” denotes the usual product of functions and
(
k
j

)
=
(
k1
j1

)
· · ·
(
kn
jn

)
for

k, j ∈ Nn0 . For details we refer the reader to [11].

We consider two classical versions of Hankel transform given by

(2.7) (hλf)(t) =

∫ ∞
0

f(x)
√
xtJλ−1/2(xt) dx, t ∈ (0,∞)

and

(2.8) (Hλf)(t) =

∫ ∞
0

f(x)(xt)1/2−λJλ−1/2(xt) x2λ dx, t ∈ (0,∞)

where λ ∈ R, λ > 0 and Jν is the Bessel function of first kind and order ν.
S. Molina and S. Trione studied in [13] an n-dimensional generalization of

(2.7), given by hλ and defined by

(2.9) (hλφ)(y) =

∫
Rn+
φ(x1, . . . , xn)

n∏
i=1

{√xiyiJλi−1/2(xiyi)} dx1 · · · dxn.

Analogously it is possible to define an n-dimensional generalization for (2.8),
given by Hλ and defined by

(Hλφ)(y)(2.10)

=

∫
Rn+
φ(x1, . . . , xn)

{
n∏
i=1

(xiyi)
1/2−λiJλi−1/2(xiyi)x

2λi
i

}
dx1 · · · dxn.

In both (2.9) and (2.10), λ = (λ1, . . . , λn), λi > 0 and Jν represents the
Bessel function of first kind and order ν.

Next we define certain weighted Lp-spaces for 1 ≤ p ≤ ∞. Let

(2.11) s(x) =
x2λ

Cλ
,

(2.12) r(x) = x−λ,

where λ = (λ1, . . . , λn), x ∈ Rn+, Cλ = 2λ−1/2 Γ(λ1 + 1/2) · · ·Γ(λn + 1/2) and

dx is the usual n-dimensional Lebesgue measure and x2λ and x−λ are given by
(2.1) and 2λ−1/2 is given by (2.2). Let Lp(Rn+, srp), 1 ≤ p < ∞, be the space
of measurable functions f defined over Rn+ with norm

‖f‖Lp(srp) =

(∫
Rn+
|f(x)|p s(x)rp(x) dx

)1/p

1 ≤ p <∞.

Moreover, L∞(Rn+, r) is the space of measurable functions over Rn+ such that

‖f‖L∞(r) = ess sup
x∈Rn+

|r(x)f(x)| <∞.

For simplicity we write Lp(srp) and L∞(r) instead of Lp(Rn+, srp) and
L∞(Rn+, r).
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By D(Rn+) we denote the space of functions in C∞(Rn+) with compact sup-
port in Rn+ with the usual topology, and by D′(Rn+) the space of classical
distributions in Rn+.

Let λ ∈ Rn. We consider the Zemanian space Sλ of the functions φ ∈
C∞(Rn+) such that

(2.13) γλm,k(φ) = sup
x∈Rn+

|xmT k{x−λφ(x)}| <∞, m, k ∈ Nn0

endowed with the topology generated by the family of seminorms {γλm,k} and

the operators T k are given by (2.5). Sλ is a Frechet space (see [13]). The dual
space of Sλ is denoted by S′λ.

Lemma 2.2. The following inclusions hold

(2.14) Sλ ⊂ L1(sr) ∩ L∞(r) ⊂ Lp(srp), 1 ≤ p <∞,

where s and r are given by (2.11) and (2.12), respectively.

Proof. Let φ ∈ Sλ,

(2.15) ‖φ‖L∞(r) = sup
x∈Rn+

|x−λφ(x)| = γλ0,0(φ).

Then φ ∈ L∞(r). Let m ∈ N such that m > 2λi + 1 for i = 1, . . . , n. Then∫
Rn+
|φ(x)|s(x)r(x) dx

=

∫
(0,1]n

|x−λφ(x)| x
2λ

Cλ
dx+

∫
Rn+−(0,1]n

xm|x−λφ(x)| x
2λ

Cλ
dx

≤ γλ0,0(φ) C−1
λ

∫
(0,1]n

x2λdx+ γλm,0(φ) C−1
λ

∫
Rn+−(0,1]n

x2λdx <∞.

Thus

(2.16) ‖φ‖L1(sr) ≤ C{γλ0,0(φ) + γλm,0(φ)}, φ ∈ Sλ.

Now let us see that L1(sr) ∩ L∞(r) ⊂ Lp(srp). Let φ ∈ L1(sr) ∩ L∞(r).∫
Rn+
|φ(x)|ps(x)rp(x) dx =

∫
Rn+
|φ(x)|p−1r(x)p−1 |φ(x)|s(x)r(x) dx

=

∫
Rn+
|r(x)φ(x)|p−1 |φ(x)|s(x)r(x) dx

≤ ‖φ‖p−1
L∞(r)‖φ‖L1(sr),

from where

(2.17) ‖φ‖Lp(srp) ≤ ‖φ‖
p−1
p

L∞(r)‖φ‖
1
p

L1(sr).
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From (2.15) and (2.16) we can consider that there exist constants C1 and
C2 such that

(2.18) ‖φ‖L∞(r) ≤ C1{γλ0,0(φ) + γλm,0(φ)}, φ ∈ Sλ,

(2.19) ‖φ‖L1(sr) ≤ C2{γλ0,0(φ) + γλm,0(φ)}, φ ∈ Sλ.

Then from (2.17), (2.18) and (2.19) we can consider a constant C3 such that

(2.20) ‖φ‖Lp(srp) ≤ C3{γλ0,0(φ) + γλm,0(φ)}, φ ∈ Sλ. �

Remark 2.3. If φ ∈ L1(sr), then the Hankel transform hλφ is well defined
because the kernel (xiyi)

1/2−λiJλ−1/2(xiyi) is bounded for λi > 0, i = 1, . . . , n
(see [16, (1), p. 49]),∫

Rn+
|φ(x)|

n∏
i=1

{(xiyi)λi |(xiyi)1/2−λiJλi−1/2(xiyi)|} dx

≤ yλMn

∫
Rn+
|φ(x)| xλ dx = Cyλ‖φ‖L1(sr) <∞.

By Lemma 2.2, hλφ is well defined for all φ ∈ Sλ and is an automorphism
of Sλ (see [13] for the n-dimensional case).

We call a function f ∈ L1
loc(Rn+) a regular element of S′λ if the application

Tf ∈ S′λ, where Tf (φ) =
∫
Rn+
f(x)φ(x) dx with φ ∈ Sλ.

Lemma 2.4. Let 1 ≤ p <∞. A function in Lp(srp) or in L∞(r) is a regular
element of S′λ. In particular, the functions in Sλ can be considered as regular
elements of S′λ.

Proof. Let f ∈ L∞(r) and φ ∈ Sλ. Since Sλ ⊂ L1(sr), φ ∈ L1(r−1) and
(Tf , φ) =

∫
Rn+
f(x)φ(x) dx is well defined. So, by (2.16)

|(Tf , φ)| ≤ ‖f‖L∞(r)‖φ‖L1(r−1) = Cλ‖f‖L∞(r)‖φ‖L1(sr)

≤ C Cλ‖f‖L∞(r){γλ0,0(φ) + γλm,0(φ)}.

Consequently, f is a regular element of S′λ.
Now, let f ∈ Lp(srp) with 1 ≤ p <∞ and φ ∈ Sλ, then

|(Tf , φ)| ≤
∫
Rn+
|f(x)φ(x)| dx(2.21)

=

∫
Rn+
|r(x)f(x)| |s−1(x) r−1(x) φ(x)| s(x) dx

=

∫
Rn+
|r(x)f(x)| Cλ|r(x)φ(x)| s(x) dx.
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Since r|f | ∈ Lp(s) and r|φ| ∈ Lq(s), being q such that 1
p + 1

q = 1, then due

to Hölder’s inequality and (2.20) we obtain that

|(Tf , φ)| ≤ Cλ‖f‖Lp(srp)‖φ‖Lq(srq) ≤ C Cλ‖f‖Lp(srp){γλ0,0(φ) + γλm,0(φ)}
with m > 2λi + 1 for i = 1, . . . , n. Therefore f is a regular element of S′λ. �

Remark 2.5. In particular if p = 2, Lp(srp) = L2(Rn+) and from the previous
lemma we have that the functions in L2(Rn+) can be considered as regular
elements of S′λ.

Given f, g defined on Rn+, the Hankel convolution associated to the trans-
formation hλ is defined formally by

(2.22) (f]g)(x) =

∫
Rn+

∫
Rn+

Dλ(x, y, z)f(y)g(z) dy dz,

where for every x, y, z ∈ Rn+,

(2.23) Dλ(x, y, z) =

n∏
i=1

Dλi(xi, yi, zi),

and Dν is the Delsarte kernel defined in [5], given by

(2.24) Dν(u, v, w) =
2ν−3/2 (uvw)−ν+1

Γ(ν)
√
π

A(u, v, w)2ν−2

and A(u, v, w) is the area of the triangle with sides u, v, w ∈ R+ and ν ∈ R,
ν > 0.

Note that |u − v| < w < u + v is the condition for such a triangle to exist
and in this case

A(u, v, w)(2.25)

=

{
1
4

√
[(u+ v)2 − w2][w2 − (u− v)2] |u− v| < w < u+ v,

0 0 < w < |u− v| or w > u+ v.

Remark 2.6. If u, v and w are the sides of a triangle and θ is the angle opposite
the side w, then

A(u, v, w) =
uv sin θ

2
.

Proposition 2.7.

(i) Dλ(x, y, z) ≥ 0, x, y, z ∈ Rn+.

(ii)
∫
Rn+

Dλ(x, y, z)
n∏
i=1

{
√
zitiJλi−1/2(ziti)} dz

= t−λ
n∏
i=1

{
√
xitiJλi−1/2(xiti)}

n∏
i=1

{
√
yitiJλi−1/2(yiti)}.

(iii)
∫
Rn+
zλDλ(x, y, z) dz = C−1

λ xλyλ.

Proof. The proof follows from the one dimensional case (see [5, 12]). �
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The proof of the following results are analogous to the ones proved in [12]
for the one dimensional case and they will be omitted.

Lemma 2.8. Let f ∈ L1(sr).

(i) If g ∈ L∞(r), then the convolution f]g(x) exists for every x ∈ Rn+,
f]g(x) ∈ L∞(r) and

(2.26) ‖f]g‖L∞(r) ≤ ‖f‖L1(sr)‖g‖L∞(r).

(ii) If g ∈ Lp(srp), 1 ≤ p < ∞, then the convolution f]g(x) exists for
almost every x ∈ Rn+, f]g(x) ∈ Lp(srp) and

(2.27) ‖f]g‖Lp(srp) ≤ ‖f‖L1(sr)‖g‖Lp(srp).

Lemma 2.9. Let f, g ∈ L1(sr). Then

(2.28) hλ(f]g) = rhλ(f)hλ(g).

Lemma 2.10. Let f ∈ L1(sr). Then the Hankel transform hλf ∈ L∞(r) and

‖hλf‖L∞(r) ≤ ‖f‖L1(sr).

Remark 2.11. Given f ∈ L1(Rn+) we have that hλf is continuous and is in
L∞(Rn+) and

‖hλf‖∞ ≤ C‖f‖1.

Proposition 2.12. hλ(L1(Rn+)) ⊂ C0(Rn+).

Proof. First, we observe that

(2.29) L1(sr) ∩ L∞(r) ⊂ L1(Rn+).

Let the cube Q = [0, 1]n. Then∫
Rn+
|f(x)| dx =

∫
Rn+
|f(x)| r(x) r−1(x) dx

=

∫
Q∩Rn+

|f(x)| r(x) r−1(x) dx+

∫
Qc∩Rn+

|f(x)| r(x) r−1(x) dx

≤ ‖f‖L∞(r)

∫
Q∩Rn+

r−1(x) dx+

∫
Qc∩Rn+

|f(x)| r−1(x) dx

≤ C‖f‖L∞(r) + Cλ‖f‖L1(sr),

because r(x) < 1 for ‖x‖ > 1, λi > 0, i = 1, . . . , n and r(x)s(x) = C−1
λ r−1(x).

By (2.14) and (2.29) we deduce that Sλ ⊂ L1(Rn+). Since D(Rn+) ⊂ Sλ, Sλ
is dense in L1(Rn+). Given f ∈ L1(Rn+) and {φm} ∈ Sλ such that φm → f
in L1(Rn+), then by Remark 2.11 hλ(φm) → hλ(f) uniformly. Since hλ(φm) ∈
C0(Rn+), we have hλ(f) ∈ C0(Rn+). �

We are going to consider Bessel operators in Rn+ given by (1.1) and (1.2)
which are related through

(2.30) ∆λ = xλBλx
−λ,
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see Remark C.1 for a proof.
Bessel operator (1.1) and Hankel transform (2.9) were studied in the distri-

butional setting over the Zemanian spaces Sλ and S′λ (see [11], [13] and [17]).
Since ∆λ is a continuous operator in Sλ and selfadjoint, so the generalized

Bessel operator ∆λ can be extended to S′λ by transposition

(∆λf, φ) = (f,∆λφ), f ∈ S′λ, φ ∈ Sλ.
Analogously, generalized Hankel transform hλf can be extended to S′λ by

(hλf, φ) = (f, hλφ), f ∈ S′λ, φ ∈ Sλ
for λ = (λ1, . . . , λn), λi > 0, i = 1, . . . , n. Then hλ is an automorphism over
Sλ and S′λ.

There exist different proofs for the inversion theorem of the Hankel transform
for the 1-dimensional case. In this work, we present a proof for the inversion
theorem for the n-dimensional case, in the same way as the classic versions of
the results known for the inversion of the Fourier transform in Lebesgue spaces.

Theorem 2.13. Let f ∈ L1(Rn+, xλ) and hλf ∈ L1(Rn+, xλ), where xλ is given
by (2.1). Then f(x) may be redefined on a set of measure zero so that it is
continuous on Rn+ and

(2.31) f(x) = hλ(hλf)(x)

for almost every x ∈ Rn+.

Proof. For the proof of this result, we refer the reader to the Appendix. �

Remark 2.14. From Theorem 2.13 we deduce immediately the validity of equal-
ity (2.31) in Sλ and S′λ.

For the proof of the following results, we refer the reader to [13].

Lemma 2.15. Let φ ∈ Sλ. Then

(i) hλ∆λφ = ‖y‖2hλφ.
(ii) ∆λhλφ = hλ(‖x‖2φ).

Lemma 2.16. If u ∈ S′λ. Then

(i) hλ∆λu = ‖x‖2hλu.
(ii) ∆λhλu = hλ(‖y‖2u).

Remark 2.17. According to Lemma 3.2 in [11] the functions (t+‖x‖2) for t ≥ 0
and (t+ ‖x‖2)−1 for t > 0 belong to the space of multipliers of Sλ and S′λ.

So, the next result holds.

Lemma 2.18. The following equalities are valid in Sλ and S′λ for m ∈ N.

If z ∈ C,
(i) (z + ∆λ)mhλ = hλ(z + ‖y‖2)m.
If t ∈ R, t > 0,

(ii) hλ(t+ ∆λ)−m = (t+ ‖y‖2)−mhλ.
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(iii) hλ(∆λ(t+ ∆λ)−1)m = ‖y‖2m(t+ ‖y‖2)−mhλ.

Proof. The proof of this result is omitted since it follows by induction. �

3. Non-negativity and fractional powers of similar operators

In this section, we include a brief review of non-negative operators in Banach
spaces and in locally convex spaces.

Let X be a (real or complex) Banach space. Let A be a closed linear operator
A : D(A) ⊂ X → X and ρ(A) the resolvent set of A. We say that A is non-
negative if (−∞, 0) ⊂ ρ(A) and

sup
t>0
{‖t(t+A)−1‖} <∞.

Now, let X be a locally convex space with a Hausdorff topology generated
by a directed family of seminorms {‖ ‖α}α∈Λ. A family of linear operators
{At}t∈Γ, At : D(At) ⊂ X → X, is equicontinuous if for each α ∈ Λ there are
β = β(α) ∈ Λ and a constant C = Cα ≥ 0 such that for all t ∈ Γ

‖Atφ‖α ≤ C‖φ‖β , φ ∈ X.
Under the above conditions, we say that a closed linear operator A : D(A) ⊂
X → X is non-negative if (−∞, 0) ⊂ ρ(A) and the family of operators

{t(t+A)−1}t>0

are equicontinuous.
Now, we will briefly describe the theory of fractional powers of operators.

According to [9, Proposition 3.1.3], we can define the Balakrishnan operator
Jα in the following way.

Let A be a non-negative operator in a Banach space or a locally convex
and sequentially complete space. Let α ∈ C and 0 < Reα < n, n ∈ N. If
φ ∈ D(An) and m ≥ n is a positive integer, then

(3.1) Jαφ =
Γ(m)

Γ(α)Γ(m− α)

∫ ∞
0

tα−1
[
A(t+A)−1

]m
φ dt.

If A is bounded, JαA can be considered as the fractional power of A. In other
cases, we can consider the following representation for the fractional power
stated in [9, Theorem 5.2.1].

Theorem 3.1. Let A be a non-negative operator, α ∈ C, Reα > 0, z ∈ ρ(−A)
and n ∈ N. Then

(3.2) Aα = (z +A)nJαA(z +A)−n.

(If n > Reα, the operator JαA can be replaced by JαA in the preceding formula.)

Similar operators have been described in the introduction. Let A and B be
similar operators and T be the isomorphism that verifies (1.4). Then

(zId+B)−1 = T (zId+A)−1T−1
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for z a complex number, from which we deduce immediately that A is a non-
negative operator if and only if so is B.

We have the following result which holds in Banach spaces and in sequen-
tially complete locally convex spaces.

Proposition 3.2. Let A and B be similar non-negative operators. If α ∈ C,
Reα > 0, then

(3.3) JαB = TJαAT
−1,

and

(3.4) Bα = TAαT−1,

where T is the isometric isomorphism that verifies B = TAT−1.

4. Fractional powers of ∆λ in Lebesgue spaces

Let s and r be as in Section 2 and let 1 ≤ p < ∞. We will denote by ∆λ,p

the part of ∆λ in Lp(srp), that is to say, the operator ∆λ with domain

D(∆λ,p) = {f ∈ Lp(srp) : ∆λf ∈ Lp(srp)}
and given by ∆λ,pf = ∆λf .

Analogously, with ∆λ,∞ we will denote the part of ∆λ in L∞(r), Bλ,p and
Bλ,∞ the part of Bλ in Lp(s) and L∞(Rn+), respectively.

Let Lr be the isometric isomorphism

Lr : Lp(srp)→ Lp(s) with 1 ≤ p <∞
(or Lr : L∞(r)→ L∞(Rn+)) given by

Lr(f) = rf.

Then

∆λ,p = L−1
r Bλ,pLr.

Consequently it is enough to study the operator ∆λ in the spaces Lp(srp)
(or L∞(r)). In order to study the non-negativity of operators ∆λ,p and ∆λ,∞
we consider the following function given by

(4.1) Nν(w) =

∫ ∞
0

e−u−
w2

4u
du

uν+1

which is defined for all ν ∈ R and w ∈ R+.
Let u ∈ R+. If λ = (λ1, . . . , λn), then uλ+1/2 means

uλ+1/2 = uλ1+1/2 · · ·uλn+1/2 = uλ1+···+λn+n
2 ,

from which

(4.2)

Nλ1+···+λn+n
2−1(‖x‖) =

∫ ∞
0

e−u−
‖x‖2
4u

dt

uλ1+···+λn+n
2−1+1

=

∫ ∞
0

e−u−
‖x‖2
4u

dt

uλ+1/2
.
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Given t > 0, let us consider the function

(4.3) Nt(x) = 2−λ−1/2xλtλt
n
2−1Nλ1+···+λn+n

2−1(‖
√
tx‖), x ∈ Rn+.

Lemma 4.1. Let λ = (λ1, . . . , λn), λi > 0 and t > 0. Then

(a) Nt ∈ L1(sr) and

‖Nt‖L1(sr) =
1

t
,

(b)

hλNt(y) =
yλ

t+ ‖y‖2
.

Proof.

‖Nt‖L1(sr)

=

∫
Rn+
|Nt(x)| x

λ

Cλ
dx

=

∫
Rn+

2−λ−1/2xλtλt
n
2−1Nλ1+···+λn+n

2−1(‖
√
tx‖) x

λ

Cλ
dx

= 2−λ−1/2tλt
n
2−1 1

Cλ

∫
Rn+

{∫ ∞
0

e−u−
t‖x‖2

4u
du

uλ+1/2

}
x2λdx

= 2−λ−1/2tλt
n
2−1 1

Cλ

∫ ∞
0

{∫
Rn+
e−

t‖x‖2
4u x2λdx

}
e−u

du

uλ+1/2

= 2−λ−1/2tλt
n
2−1 1

Cλ

∫ ∞
0

n∏
i=1

{∫ ∞
0

e−
tx2i
4u x2λi

i dxi

}
e−u

du

uλ+1/2

= 2−λ−1/2tλt
n
2−1 1

Cλ

∫ ∞
0

n∏
i=1

{
2λi−1/2Γ(λi + 1/2)

(
2u

t

)λi+1/2
}
e−u

du

uλ+1/2

= 2−λ−1/2tλt
n
2−1 1

Cλ
2λ+1/2t−λt−

n
2 Cλ

∫ ∞
0

uλ+1/2e−u
du

uλ+1/2

=
1

t
,

where we have used the formula (A.6), and thus (a) holds. To see (b),

hλNt(y)

=

∫
Rn+
Nt(x)

n∏
i=1

{√xiyiJλi−1/2(xiyi)}dx

=

∫
Rn+

2−λ−1/2xλtλt
n
2−1

{∫ ∞
0

e−u−
t‖x‖2

4u
du

uλ+1/2

} n∏
i=1

{√xiyiJλi−1/2(xiyi)}dx
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= 2−λ−1/2y1/2tλt
n
2−1

∫ ∞
0

{∫
Rn+
xλ+1/2e−

t‖x‖2
4u

n∏
i=1

{Jλi−1/2(xiyi)} dx

}
e−u

du

uλ+1/2

= 2−λ−1/2y1/2tλt
n
2−1

∫ ∞
0

n∏
i=1

{∫ ∞
0

xλi+1/2e−
tx2i
4u Jλi−1/2(xiyi) dxi

}
e−u

du

uλ+1/2

= 2−λ−1/2y1/2tλt
n
2−1

∫ ∞
0

n∏
i=1

{(
t

2u

)−λi−1/2

y
λi−1/2
i e−

uy2i
t

}
e−u

du

uλ+1/2

= 2−λ−1/2y1/2tλt
n
2−12λ+1/2t−λ−1/2yλ−1/2

∫ ∞
0

uλ+1/2e−
u‖y‖2
t e−u

du

uλ+1/2

= yλtλt
n
2−1t−λλ−

n
2

∫ ∞
0

e−u(1+
‖y‖2
t ) du

= yλt−1 t

t+ ‖y‖2

∫ ∞
0

e−s ds

=
yλ

t+ ‖y‖2
,

where we have used (A.4). �

Lemma 4.2. Let 1 ≤ p <∞. If f ∈ Lp(srp) or f ∈ L∞(r), then the following
equality holds on S′λ

(4.4) hλ(Nt]f) =
1

t+ ‖y‖2
hλf.

Proof. Suppose that f ∈ Lp(srp) and ψ ∈ Sλ, we claim that

(4.5)

∫
Rn+

(Nt]f)(x)ψ(x) dx =

∫
Rn+
f(z)(Nt]ψ)(z) dz,

∫
Rn+
f(z)(Nt]ψ)(z) dz(4.6)

=

∫
Rn+
f(z)

{∫
Rn+

∫
Rn+
Nt(y)ψ(x) Dλ(x, y, z) dy dx

}
dz.

Let us see that
∫
Rn+
|f(z)|

{∫
Rn+

∫
Rn+
|Nt(y)| |ψ(x)| Dλ(x, y, z) dy dx

}
dz is fi-

nite.
Let

G(z) =

∫
Rn+

∫
Rn+
|Nt(y)| |ψ(x)| Dλ(x, y, z) dy dx

and let q such that 1
p + 1

q = 1. The function G is the convolution of |Nt| and

|ψ|. From Lemma 2.8, since |Nt| ∈ L1(sr) and |ψ| ∈ Lq(srq) we have that for
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G ∈ Lq(srq),∫
Rn+
|f(z)| |G(z)| dz =

∫
Rn+

(r|f(z)|) (r−1s−1|G(z)|) s dz

=

∫
Rn+

(r|f(z)|) (Cλr|G(z)|) s dz

= Cλ

∫
Rn+
|rf(z)| |rG(z)| s dz

≤ Cλ‖rf‖Lp(s)‖rG‖Lq(s)
= Cλ‖f‖Lp(srp)‖G‖Lq(srq).

Then it is possible to change the order of integration in (4.6).∫
Rn+
f(z) (Nt]ψ)(z) dz =

∫
Rn+

{∫
Rn+

∫
Rn+
Nt(y) f(z) Dλ(x, y, z) dy dz

}
ψ(x) dx

=

∫
Rn+

(Nt]f)(x) ψ(x) dx.

So, we have proved (4.6).
Now let f ∈ L∞(r). To see that (4.5) holds, it will be enough to see that∫

Rn+

{∫
Rn+

{∫
Rn+
|f(z)| |Nt(y)| |ψ(x)| Dλ(x, y, z) dz

}
dy

}
dx

≤ ‖rf‖L∞(Rn+)

∫
Rn+

{∫
Rn+
|Nt(y)| |ψ(x)|

{∫
Rn+
zλDλ(x, y, z) dz

}
dy

}
dx

= Cλ ‖f‖L∞(r) ‖Nt‖L1(sr) ‖ψ‖L1(sr) <∞.

Let φ ∈ Sλ and f ∈ Lp(sr) or f ∈ L∞(r). From (4.5) we have that

(hλ(Nt]f), φ) = ((Nt]f), hλφ) =

∫
Rn+

(Nt]f)(x) (hλφ)(x) dx(4.7)

=

∫
Rn+
f(z) (Nt]hλφ)(z) dz.

From Lemma 2.9, Theorem 2.13 and item (b) of Lemma 4.1 we obtain that

hλ(Nt]hλφ)(y) = r(hλNt)(hλ(hλφ))(y) = y−λ
yλ

t+ ‖y‖2
φ(y) =

φ(y)

t+ ‖y‖2
.

Then

(4.8) Nt]hλφ = hλ

(
φ

t+ ‖y‖2

)
.
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Finally, from (4.7) and (4.8) we obtain that for φ ∈ Sλ that

(hλ(Nt]f), φ) =

∫
Rn+
f(x)(Nt]hλφ)(x) dx

=

∫
Rn+
f(x) hλ

(
φ

t+ ‖y‖2

)
(x) dx

=

∫
Rn+

1

t+ ‖x‖2
hλf(x) φ(x) dx

=

(
hλf

t+ ‖x‖2
, φ

)
.

�

Theorem 4.3. Let λ = (λ1, . . . , λn) and λi > 0. Then ∆λ,p and ∆λ,∞ are
closed and non-negative operators.

Proof. Since convergence in L∞(r) and Lp(srp) implies convergence in D′(Rn+),
∆λ,∞ and ∆λ,p are closed.

Now let t > 0 and f ∈ D(∆λ,∞) such that (t+ ∆λ,∞)f = 0. So,

hλ(t+ ∆λ,∞)f = 0

in S′λ. By Lemma 2.16 we obtain that

(t+ ‖y‖2)hλf = 0

in S′λ and hence by Remark 2.17

hλf = (t+ ‖y‖2)−1(t+ ‖y‖2)hλf = 0.

Then, f = 0 as element of S′λ and we conclude that f = 0 a.e. in x ∈ Rn+ and
t+ ∆λ,∞ is injective.

Let f ∈ L∞(r) and g = Nt]f . Then, by Lemma 2.8 g ∈ L∞(r) and

hλ((t+ ∆λ,∞)g) = (t+ ‖y‖2)hλg = (t+ ‖y‖2)hλ(Nt]f) = hλf.

By injectivity of the Hankel transform in S′λ we obtain that

(t+ ∆λ,∞)g = f,

so, t+ ∆λ,∞ is onto. Also

‖(t+ ∆λ,∞)−1f‖L∞(r) = ‖g‖L∞(r) = ‖Nt]f‖L∞(r)

≤ ‖Nt‖L1(sr)‖f‖L∞(r)

=
1

t
‖f‖L∞(r),

hence

‖t(t+ ∆λ,∞)−1f‖L∞(r) ≤ ‖f‖L∞(r)

and ∆λ,∞ is non-negative.
The proof of the non-negativity of ∆λ,p is similar. �
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Since we have proved that both ∆λ,p and ∆λ,∞ are non-negative we can
consider the fractional powers of them. If α ∈ C, Reα > 0 and n > Reα, then
the fractional power of ∆λ,∞ can be defined from (3.2) by:

(∆λ,∞)α = (∆λ,∞ + 1)nJ α∞(∆λ,∞ + 1)−n,

where J α∞ is the Balakrishnan operator associated to ∆λ,∞ given by:

J α∞φ =
Γ(n)

Γ(α)Γ(n− α)

∫ ∞
0

tα−1[∆λ,∞(t+ ∆λ,∞)−1]nφ dt

for α ∈ C, 0 < Reα < n and φ ∈ D[(∆λ,∞)n].
Analogously the definition of fractional powers of ∆λ,p is defined.

5. Non-negativity of Bessel operator ∆λ in the space B

Remark 5.1. The operator ∆λ is not non-negative in Sλ.

If ∆λ were non-negative in Sλ, since ∆λ is continuous in Sλ, given α ∈ C,
0 < α < 1 and according to (3.1) and (A.8), we have that fractional power ∆α

λ

would be given by

(5.1) ∆α
λφ =

sinαπ

π

∫ ∞
0

tα−1∆λ(t+ ∆λ)−1φ dt

and D(∆α
λ) = D(∆λ) = Sλ. Applying the Hankel transform in (5.1) we obtain

hλ∆α
λφ =

sinαπ

π

∫ ∞
0

tα−1hλ[∆λ(t+ ∆λ)−1φ] dt

=
sinαπ

π

∫ ∞
0

tα−1‖y‖2(t+ ‖y‖2)−1hλφ(y) dt

= (‖y‖2)αhλφ(y),

where we have interchanged the Bochner integral with the Hankel transform,
and then we have applied item (iii) of Lemma 2.18 and [9, Remark 3.1.1]. This
would imply that (‖y‖2)αhλφ(y) ∈ Sλ which is not true in general.

Now we consider the Banach space Y = L1(sr) ∩ L∞(r), with norm

‖f‖Y = max
{
‖f‖L1(sr), ‖f‖L∞(r)

}
,

and the part of the Bessel operator in Y , ∆λ,Y , with domain given by

D[∆λ,Y ] = {f ∈ Y : ∆λf ∈ Y }.

From Theorem 4.3 we have that ∆λ,Y is closed and non-negative.
Let k ∈ N0. We will understand ∆k

λ,Y as the iteration of the operator ∆λ,Y

k-times.

Proposition 5.2. If k > n
2 , then D[∆k+1

λ,Y ] ⊂ C0(Rn+).
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Proof.

D[∆k+1
λ,Y ] = {φ ∈ D[∆k

λ,Y ] : ∆k
λ,Y φ ∈ D[∆λ,Y ]}.

Let f ∈ D[∆k+1
λ,Y ]. Then f and ∆k

λ,Y f are in D[∆λ,Y ].

From Lemma 2.2 and (2.29) we have that

L1(sr) ∩ L∞(r) ⊂ L1(Rn+) ∩ L2(Rn+).

Then f and ∆k
λ,Y f are in L1(Rn+). From Remark 2.11 we obtain that hλf and

hλ(∆k
λ,Y f) are in L∞(Rn+), that is to say that there exists M > 0 such that

|(1 + ‖y‖2k) hλf | ≤M.

Since for k > n
2 , (1+‖y‖2k)−1 is integrable in Rn+, we obtain hλf ∈ L1(Rn+).

Then, we have proved that if f ∈ D[∆k+1
λ,Y ], f and hλf ∈ L1(Rn+) ∩ L2(Rn+).

From Remark 2.5 we have that L1(Rn+) ∩ L2(Rn+) ⊂ S′λ and from Remark
2.14 we have

hλ(hλf)(x) = f(x), a.e. x ∈ Rn+,
considering f as a regular distribution in S′λ. Since hλf ∈ L1(Rn+), by Propo-
sition 2.12 we have that f = g a.e. in Rn+ with g ∈ C0(Rn+). �

We now consider the following space:

(5.2) B = {f ∈ Y : ∆k
λf ∈ Y for k = 0, 1, 2, . . .} =

∞⋂
k=0

D[∆k
λ,Y ],

with seminorms

ρm(f) = max
0≤k≤m

{
‖∆k

λf‖Y , m = 0, 1, 2, . . .
}
.

Remark 5.3. From Proposition 5.2 is evident that B ⊂ C0(Rn+). Moreover, from
Lemma 2.2 we obtain that B ⊂ Lp(srp) for all 1 ≤ p <∞, and considering that
∆λ is a continuous operator from Sλ in itself then Sλ ⊂ B and the topology
of Sλ induced by B is weaker than the usual topology generated by seminorms
given by (2.13). In fact, from (2.18) and (2.19) we have that

(5.3) ‖φ‖Y ≤ C{γλ0,0(φ) + γλm,0(φ)}, φ ∈ Sλ
for m > 2λi + 1, i = 1, . . . , n and by the continuity of ∆λ in Sλ we deduce
that given a seminorm ρm, there exist a finite set of seminorms {γλmi,ki}

r
i=1 and

constants c1, . . . , cr such that

ρm(φ) ≤
r∑
i=1

ci γ
λ
mi,ki(φ), φ ∈ Sλ.

From the density of D(Rn+) in B we deduce the density of Sλ in B.

We denote with ∆λ,B the part of Bessel operator ∆λ in B, so the domain of
the operator ∆λ,B is B and the following result holds.
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Theorem 5.4. B is a Frechet space and ∆λ,B is a continuous and non-negative
operator on B.

Proof. Let {φk} be a Cauchy sequence in B. Then the convergence of {φk}
follows considering the seminorm ρ0 and the completeness of L1(sr) and L∞(r).

Since ρm(∆λφ) = ρm+1(φ), ∆λ,B is continuous. The non-negativity follows
from Proposition 1.4.2 in [9]. �

6. Non-negativity of Bessel operator ∆λ in the distributional
space B′

We will study the non-negativity of Bessel operator in the topological dual
space of B with the strong topology, that is to say, the space B′ endowed with
the topology generated by the family of seminorms {| · |B}, where the sets B
are bounded sets in B, and the seminorms are given by

|T |B = sup
φ∈B
|(T, φ)|, T ∈ B′.

Remark 6.1. Since B is a Frechet space, B is bornological. Then from [15, The-
orem 6.1, p. 148] we obtain that the strong dual B′ is complete. Consequently
B′ is sequentially complete.

Remark 6.2. Lp(srp) and L∞(r) are included in B′ (1 ≤ p <∞).
Let f ∈ Lp(srp), φ ∈ B and q such that 1

p + 1
q = 1. Then∣∣∣∣∣

∫
Rn+
f(x)φ(x) dx

∣∣∣∣∣ =

∣∣∣∣∣
∫
Rn+
f(x)φ(x)s−1(x)r−p(x)s(x)rp(x) dx

∣∣∣∣∣(6.1)

≤ ‖f‖Lp(srp)‖φ s−1r−p‖Lq(srp)

and

‖φ s−1r−p‖Lq(srp) =

{∫
Rn+
|φ s−1r−p|qsrp

} 1
q

(6.2)

=

{∫
Rn+
|φ|q (Cλr

2r−p)qsrp

} 1
q

= Cλ

{∫
Rn+
|φ|q r2q−pq+ps

} 1
q

= Cλ

{∫
Rn+
|φ|q srq

} 1
q

.

Furthermore, from (2.17)

‖φ‖Lq(srq) ≤
{
‖φ‖L∞(r)

} q−1
q
{
‖φ‖L1(sr)

} 1
q ,
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from where

(6.3) ‖φ‖Lq(srq) ≤ ρ0(φ).

Then, from (6.1), (6.2) and (6.3) we obtain that f ∈ B′.
Now, let B be a bounded set in B. Then

|f |B = sup
φ∈B

∣∣∣∣∣
∫
Rn+
fφ

∣∣∣∣∣ ≤ Cλ‖f‖Lp(srp) sup
φ∈B
‖φ‖Lq(srq) ≤ Cλ‖f‖Lp(srp) sup

φ∈B
ρ0(φ).

Thus, the topology in Lp(srp) induced by B′ with the strong topology is
weaker than the usual topology.

Remark 6.3. Since Sλ is dense in B and the topology of Sλ induced by B is
weaker than the generated by seminorms given by (2.13), B′ ⊂ S′λ. Moreover,
from the continuity of the Bessel operator in B, we can consider ∆λ in B′ as
the adjoint operator of ∆λ in B, that is to say

(∆λT, φ) = (T,∆λφ), T ∈ B′, φ ∈ B,
and we denote with ∆λ,B′ the part of Bessel operator in B′.

Theorem 6.4. The operator ∆λ,B′ is continuous and non-negative considering
the strong topology in B′.

Proof. Given a bounded set B ⊂ B and T ∈ B′, then

|∆λ,B′T |B = sup
φ∈B
|(∆λ,B′T, φ)| = sup

φ∈B
|(T,∆λ,Bφ)| = |T |E ,

where the set E = {∆λ,Bφ : φ ∈ B} is also bounded. Then it follows that ∆λ,B′

is continuous.
Let now t > 0 and T ∈ B′. It is not difficult to see that the linear map

G : ψ → (T, (t + ∆Λ,B)−1ψ) is continuous and (t + ∆λ,B′)G = T . Therefore
(t+ ∆λ,B′) is surjective.

To prove the injectivity, let T ∈ B′ be such that (t+ ∆λ,B′)T = 0. Then, for
all φ ∈ B,

((t+ ∆λ,B′)T, φ) = (T, (t+ ∆λ,B)φ) = 0,

and thus T = 0 as R(t+∆λ,B) = B, due to the fact that ∆λ,B is a non-negative
operator on B.

To see that (t + ∆λ,B′)
−1 is continuous, let T ∈ B′, B ⊂ B a bounded set

and let us consider the set F = {(t+ ∆λ,B)−1φ : φ ∈ B}, then

|(t+ ∆λ,B′)
−1T |B = |G|B = sup

ψ∈B
|(G,ψ)| = sup

ψ∈B
|(T, (t+ ∆λ,B)−1ψ)|B = |T |F .

For every bounded set B ⊂ B and T ∈ B′, since ∆λ,B is non-negative, the
set D = {η(η + ∆λ,B)−1φ : φ ∈ B, η > 0} is also bounded and thus, for t > 0,

|t(t+ ∆λ,B′)
−1T |B = sup

φ∈B
|(t(t+ ∆λ,B′)

−1T, φ)|

= sup
φ∈B
|(T, t(t+ ∆λ,B)−1φ)|
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≤ |T |D.
We now conclude that the operator ∆λ,B′ is non-negative. �

Remark 6.5. The operator ∆λ,B′ is not injective because the function xλ is
solution of ∆λu = 0 and belongs to B′, in fact

|(xλ, φ)| ≤ Cλ‖φ‖L1(sr) ≤ Cλρ0(φ), φ ∈ B.

According to the representation of fractional powers of operators in locally
convex spaces given in [9], it is applied to ∆α

λ,B′ by

∆α
λ,B′T =

Γ(n)

Γ(α)Γ(n− α)

∫ ∞
0

tα−1[∆λ,B′(t+ ∆λ,B′)
−1]n T dt

for Reα > 0, n > Reα, T ∈ B′.
From the general theory of fractional powers in sequentially complete locally

convex spaces (see [9, p. 134]), we deduce some properties of powers such as
multiplicativity.

(1) If Reα > 0, then

(6.4)
(
∆α
λ,B
)∗

= ((∆λ,B)∗)
α
.

Since (∆λ,B)∗ = ∆λ,B′ , from (6.4) we obtain the following duality formula

(∆α
λ,B′T, φ) = (T,∆α

λ,Bφ), φ ∈ B, T ∈ B′.
(2) Since the usual topology in Lp(srp) is stronger than the topology induced

by B′, we can deduce that

(∆α
λ,B′)Lp(srp) = ∆α

λ,p

for Reα > 0 (see [9, Theorem 12.1.6, p. 284]).
This last property expresses a very desirable property in the theory of powers

since it tells us that the part of the distributional power of ∆λ to Lp(srp)
coincides with the power of ∆λ in Lp(srp).

7. Distributional Liouville theorem for ∆α
λ

In this section we include the proof of Theorem 1.1. Before that, we will
show the following lemma.

Lemma 7.1. Let ψ ∈ Sλ such that suppψ ⊂ Rn+ ∩ {x : ‖x‖ ≥ a} with a > 0
and α ∈ C with Reα > 0. Then ‖x‖−2αψ(x) ∈ Sλ.

Proof. It is evident that ‖x‖−2αψ(x) ∈ C∞(Rn+). We are going to see that

sup
x∈Rn+

∣∣∣xmT k{x−λ‖x‖−2αψ(x)}
∣∣∣ <∞,

with k,m ∈ Nn0 . Since suppψ ⊂ Rn+ ∩ {x : ‖x‖ ≥ a} with a > 0, we obtain

sup
x∈Rn+

∣∣∣xmT k{x−λ‖x‖−2αψ(x)}
∣∣∣ = sup

x∈Rn+:‖x‖≥a

∣∣∣xmT k{x−λ‖x‖−2αψ(x)}
∣∣∣.
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Since equality (2.6) holds, we have

sup
‖x‖≥a

∣∣∣xmT k{x−λ‖x‖−2αψ(x)}
∣∣∣

≤ sup
‖x‖≥a

∣∣∣xm k∑
j=0

(
k

j

)
T k−j{x−λψ(x)} · T j‖x‖−2α

∣∣∣
≤

k∑
j=0

(
k

j

)
C(j, α) γλm,k−j(ψ),

where C(j, α) are constants depending on α and j such that sup
‖x‖≥a

|T j‖x‖−2α| ≤

C(j, α). �

7.1. Proof of Theorem 1.1

Proof. Let u ∈ B′ such that ∆α
λ,B′u = 0. Then for all φ ∈ B

(7.1) (∆α
λ,B′u, φ) = (u,∆α

λ,Bφ) = 0.

Since ∆λ is a continuous operator in B (see Theorem 5.4), ∆α
λ,Bφ is given

by the Balakrishnan operator as:

(7.2) ∆α
λ,Bφ =

Γ(α)Γ(m− α)

Γ(m)

∫ ∞
0

tα−1[∆λ,B(t+ ∆λ,B)−1]mφ dt.

By definition of B and the fact that L1(sr) ∩ L∞(r) ⊂ Lp(srp) for all 1 ≤
p ≤ ∞ then B ⊂ D(∆λ,p) for all 1 ≤ p ≤ ∞, in particular, B ⊂ D(∆λ,2). Then
from Propositions 8.3 and 8.4 in [13] we obtain that:

(7.3) ∆α
λ,2φ =

Γ(α)Γ(m− α)

Γ(m)

∫ ∞
0

tα−1[∆λ,2(t+ ∆λ,2)−1]mφ dt.

Since for φ ∈ B, the integrating into the expressions are equal and the fact
that the convergence in B implies the convergence in L2(Rn+) (see Lemma 2.1
and Remark 5.3 in [12]), we obtain the equality of (7.2) and (7.3) as functions.

We conclude that

∆α
λ,Bφ = hλ‖y‖2αhλφ, φ ∈ B,

(see [12, Proposition 8.4]). From the last equality and (7.1), we have that

(7.4) (∆α
λ,B′u, φ) = (u, hλ‖y‖2αhλφ) = 0

for all φ ∈ B.
Since B′ ⊂ S′λ (see [12, Remark 6.2]), we can consider the Hankel transform

in B′. We are going to see that the following affirmation holds:

“If u ∈ B′ is such that (7.4) is verified, then (hλu, ψ) = 0 for all ψ ∈ Sλ such
that suppψ ⊂ Rn+ ∩ {x : ‖x‖ ≥ a} with a > 0.”
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Let u ∈ B′ such that (7.4) is valid and ψ ∈ Sλ such that suppψ ⊂ Rn+ ∩ {x :
‖x‖ ≥ a} with a > 0. Then, by Lemma 7.1, ‖x‖−2αψ(x) ∈ Sλ and since
the Hankel transform is an isomorphism in Sλ, there exists φ ∈ Sλ such that
hλφ = ‖x‖−2αψ(x). So,

(hλu, ψ) = (hλu, ‖x‖2α‖x‖−2αψ) = (hλu, ‖x‖2αhλφ) = (u, hλ‖x‖2αhλφ).

Consequently, from (7.4) we conclude that (hλu, ψ) = 0, then the assertion
is valid. Thus by [6, Theorem 4.1], there exist N ∈ N0 and scalars ck with
|k| < N such that hλu =

∑
|k|<N ckS

kδλ where δλ is given by [6, Equation

(2.3)] for k = 0. Then,

u = xλ
∑
|k|≤N

ck(−1)|k|‖x‖2k.
�

Remark 7.2 (Regular distributions in B′). If f ∈ L1
loc(Rn+) and f = O(xλ),

then f is a regular distribution in B′ given by

(f, φ) =

∫
Rn+
f(x)φ(x) dx, φ ∈ B,

and

|(f, φ)| =
∣∣∣∫

Rn+
f(x)φ(x) dx

∣∣∣
≤
∣∣∣∫
‖x‖≤M

f(x)φ(x)dx
∣∣∣+
∣∣∣∫
‖x‖≥M

f(x)φ(x)dx
∣∣∣

≤
∫
‖x‖≤M

|r−1(x)f(x)|dx ‖φ‖L∞(r) +

∫
‖x‖≥M

c xλ|φ(x)|dx

= C‖φ‖L∞(r) + c Cλ‖φ‖L1(rs) ≤ C ′ρ0(φ).

Corollary 7.3. If f ∈ L1
loc(Rn+), f = O(xλ) and ∆α

λ,B′f = 0, then f = C xλ.

8. Distributional Liouville theorem for Bα
λ

From the theory of similar operators given in [12], by the similarity of ∆λ and
Bλ, and by the non-negativity of the part of ∆λ in L1(sr) and L∞(r) we deduce
the non-negativity of the part of Bλ in L1(s) and L∞(Rn+). Consequently, we
infer the non-negativity of the part of Bλ in the Banach space Z = L1(s) ∩
L∞(Rn+) with norm

‖f‖Z = max
{
‖f‖L1(s) , ‖f‖L∞(Rn+)

}
.

Thus, if we consider Y as in Section 5 and Lr : Y → Z given by Lrf = rf
then

‖rf‖Z = max
{
‖rf‖L1(s) , ‖rf‖L∞(Rn+)

}
= max

{
‖f‖L1(rs) , ‖f‖L∞(r)

}
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= ‖f‖Y ,

so, Lr is an isometric isomorphism.
Moreover, we can consider the locally convex space F given by:

F = {f ∈ Z : Bkλf ∈ Z for k = 0, 1, 2, . . .} =

∞⋂
k=0

D
[
Bkλ,Z

]
,

where with Bλ,Z we denote the part of Bλ in Z. The space F is endowed with
the topology generated by the family of seminorms given by

γm(f) = max
0≤k≤m

{‖Bkλf‖Z}, m = 0, 1, 2, . . . .

Thus, the space F verifies that is a Frechet space and from Remarks 5.3 and
6.2 we deduce that F ⊂ C0(Rn+), F ⊂ Lp(s) for all 1 ≤ p <∞, F ⊂ L∞(Rn+),
Sλ ⊂ F and the topology of Sλ induced by F is weaker than the usual topology
in Sλ. Moreover, the operator Bλ verifies that

γm(Bλf) = max
0≤k≤m

{‖Bk+1
λ f‖Z} = γm+1(f)

for all f ∈ F . Then Bλ,F , the part of Bλ in F , is a continuous

Bλ,F : F → F .

If f ∈ B, (see (5.2)), then rf ∈ F and

γm(rf) = max
0≤k≤m

{‖Bkλrf‖Z} = max
0≤k≤m

{‖r ∆k
λr
−1rf‖Z}

= max
0≤k≤m

{‖r ∆k
λf‖Z} = max

0≤k≤m
{‖∆k

λf‖Y }

= ρm(f),

where we have consider (2.30). So, the application Lr : B → F given by
Lrf = rf is an isomorphism of locally convex spaces with inverse given by
Lr−1 : F → B.

Remark 8.1. Since B and F are isomorphic, we can deduce that F ′ is sequen-
tially complete as B′ is also sequentially complete (see Remark 6.1).

So, if we consider the continuous operator ∆λ,B : B → B, then by (2.30) we
obtain the similarity relation,

(8.1) Bλ,F = Lr ∆λ,B Lr−1 .

We deduce by (8.1) the non-negativity of Bλ,F and by [12, Proposition 1.1],
for α ∈ C, Reα > 0, we have that

(8.2) Bαλ,F = Lr ∆α
λ,B Lr−1 .

Consequently,

Bαλ,F ′ = ((Bλ,F )∗)α = (Bαλ,F )∗,
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where we have considered in the second equality that F is a Frechet space (see
[9, p. 134]). Thus,

(8.3) Bαλ,F ′ = (Lr−1)∗ (∆α
λ,B)∗ (Lr)

∗ = (Lr−1)∗ ∆α
λ,B′ (Lr)

∗,

and for T ∈ F ′, φ ∈ F

(Bαλ,F ′T, φ) = ((Lr−1)∗ ∆α
λ,B′ (Lr)

∗T, φ)(8.4)

= (T, Lr∆
α
λ,BLr−1φ).

From now on, we will use the notation:

Bλ,F = x−λ ∆λ,B x
λ,

Bαλ,F = x−λ ∆α
λ,B x

λ

and

Bαλ,F ′ = xλ ∆α
λ,B′ x

−λ

to refer to (8.1), (8.2) and (8.3). In the last equation, the operators xλ and
x−λ represent (Lr−1)∗ and (Lr)

∗, so,

xλ : B′ → F ′,

x−λ : F ′ → B′,

are given by

(xλT1, φ) = (T1, x
λφ), (T1 ∈ B′), (φ ∈ F)

(x−λT2, ψ) = (T2, x
−λψ), (T2 ∈ F ′), (ψ ∈ B)

Now we are able to give the proof of Theorem 1.2:

8.1. Proof of Theorem 1.2

Proof. Let u ∈ F ′ such that Bαλ,F ′u = 0. Then

(8.5) (Bαλ,F ′u, φ) = (xλ ∆α
λ,B′ x

−λu, φ) = 0

for all φ ∈ F . Since ∆α
λ,B′ x

−λu ∈ B′, then given ψ ∈ B and considering (8.5),
we obtain that

(∆α
λ,B′ x

−λu, ψ) = (∆α
λ,B′ x

−λu, xλx−λψ) = (xλ∆α
λ,B′ x

−λu, x−λψ) = 0.

By Theorem 1.1 we deduce that there exists a polynomial p such that x−λu =
xλp(‖x‖2) and consequently u = x2λp(‖x‖2). �

Corollary 8.2. If f ∈ L1
loc(Rn+), f = O(x2λ) and Bαλ,F ′f = 0, then f = C x2λ.
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Appendix A. Special functions

In this appendix we summarize properties of the Bessel function of the first
kind and order ν given by

(A.1) Jν(z) =
(z

2

)ν ∞∑
n=0

(−1)n
(
z
2

)2n
n! Γ(ν + n+ 1)

.

According to [7, p. 310], for ν ∈ R, ν > − 1
2 , the Bessel function verifies that

(A.2) |2νΓ(ν + 1) z−ν Jν(z)| ≤ 1.

The following equalities are also verified:∫ π

0

Jν

(√
y2 + z2 − 2yz cosφ

)
(y2 + z2 − 2yz cosφ)

1
2ν

sin2ν φ dφ(A.3)

= 2ν Γ(ν + 1/2) Γ(1/2)
Jν(y)

yν
Jν(z)

zν

for ν > − 1
2 , see [16, p. 367] and

(A.4)

∫ ∞
0

e
−ay2

2 Jν(ry) yν+1 dy = rν a−ν−1 e−
r2

2a

for ν > −1 and a > 0, see [14, p. 46].
The following equalities are valid for integrals that involve the Gamma func-

tion:
Let a > 0 and λ > − 1

2 . Then the following equalities are valid

(A.5)

∫ ∞
0

e−
x2

2 x2λ dx = 2λ−1/2 Γ(λ+ 1/2),

(A.6)

∫ ∞
0

e−
x2

2a x2λ dx = 2λ−1/2 Γ(λ+ 1/2) aλ+1/2,

(A.7)

∫ π/2

0

sin2λ θ dθ =
Γ(1/2) Γ(λ+ 1/2)

2Γ(λ+ 1)
=

√
π Γ(λ+ 1/2)

2Γ(λ+ 1)
.

Another important equation is the Euler Complements Formula

(A.8) Γ(ν)Γ(1− ν) =
π

sinπν
(0 < Re ν < 1).

Appendix B. Some results on Hankel transforms, convolution and
the Inversion theorem

Hirschman defined in [7] for the 1-dimensional case, a kernel Dν which is
defined for u, v, w ∈ R+, ν > 0, by

(B.1) Dν(u, v, w) =
23ν−5/2Γ2(ν + 1/2)

Γ(ν)
√
π

(uvw)−2ν+1A(u, v, w)2ν−2,
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where A(u, v, w) is the area of a triangle of sides u, v, w ∈ R+ defined by (2.25).
For the n-dimensional case, let x, y, z ∈ Rn+ and λ = (λ1, . . . , λn) such that

λi > 0 for all i = 1, . . . , n. We define

(B.2) Dλ(x, y, z) =

n∏
i=1

Dλi(x, y, z),

where Dλi is given by (B.1).
A convolution operation associated to the n-dimensional Hankel transform

Hλ can be defined. Given f, g defined on Rn+, the Hankel convolution associated
to the transformation Hλ is defined formally by

(B.3) f#g(x) =

∫
Rn+

∫
Rn+
f(y) g(z) Dλ(x, y, z) s(y) s(z) dy dz,

where x, y, z ∈ Rn+.

Remark B.1 (Relation between Dλ and Dλ).

(B.4) Dλ(x, y, z) = C−2
λ (xyz)1−λDλ(x, y, z),

where Dλ(x, y, z) is given by (B.2) and Dλ(x, y, z) is given by (2.23).

Proposition B.2. In this proposition we summarize some properties of the
kernel Dλ(x, y, z) given by (B.2).

(i) Dλ(x, y, z) > 0,

(ii)
∫
Rn+

Dλ(x, y, z)
n∏
i=1

{
(ziti)

1
2
−λiJλi− 1

2
(ziti)

}
s(z) dz

= Cλ
n∏
i=1

{
(xiti)

1
2
−λiJλi− 1

2
(xiti)

} n∏
i=1

{
(yiti)

1
2
−λiJλi− 1

2
(yiti)

}
,

(iii)
∫
Rn+

Dλ(x, y, z) s(z) dz = 1,

where x, y, z, t ∈ Rn+ and Jν denotes the well known Bessel function of the first
kind and order ν given by (A.1).

Theorem B.3. Let {φm} ⊂ L1(s) be a sequence of functions such that:

(1) φm(x) ≥ 0 in Rn+,
(2)

∫
Rn+
φm(x) s(x) dx = 1 for all m ∈ N,

(3) For all η > 0, lim
m→∞

∫
‖x‖>η φm(x) s(x) dx = 0.

If f ∈ L1(s), then lim
n→∞

‖f#φm − f‖L1(s) = 0.

Proof. This result is an n-dimensional generalization of [7, Corollary 2c], rela-
tive to approximate identities. �

Lemma B.4. Let f, g be functions in L1(s). Then∫
Rn+
Hλf(t) g(t) s(t) dt =

∫
Rn+
f(t)Hλg(t) s(t) dt.
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Theorem B.5. If f(x) ∈ L1(s) and Hλf(t) ∈ L1(s), then f(x) may be rede-
fined on a set of measure zero so that it is continuous in x ∈ Rn+, and then

(B.5) f(x) =

∫
Rn+
Hλf(t)

{
n∏
i=1

(xiti)
1/2−λi Jλi−1/2(xiti) t

2λi
i

}
dt

for almost every x ∈ Rn+.

Proof. We consider the sequence {φm}m∈N defined by

(B.6) φm(x) = m|λ+1/2| e−
‖x‖2m

2 .

This sequence verifies conditions (1), (2) and (3) of Theorem B.3, then if f ∈
L1(s),

lim
n→∞

‖f#φm − f‖L1(s) = 0.

Let us show that:

(B.7) φm#f(x) =

∫
Rn+
Hλ(f)(z) e−

‖z‖2
2m

{
n∏
i=1

(xizi)
1/2−λi Jλi−1/2(xizi)

}
z2λ dz.

To see this we define

(B.8) Gx(z) = e−
‖z‖2
2m

{
n∏
i=1

(xizi)
1/2−λi Jλi−1/2(xizi)

}
.

Clearly, Gx(z) ∈ L1(s) and from Lemma B.4 we have∫
Rn+
Hλ(f)(z) e−

‖z‖2
2m

{
n∏
i=1

(xizi)
1/2−λi Jλi−1/2(xizi)

}
z2λ dz(B.9)

=

∫
Rn+
Hλf(z)Gx(z) z2λ dz

=

∫
Rn+
f(t)Hλ(Gx(z))(t) t2λ dt.

Moreover,

Hλ(Gx(z))(t)

(B.10)

=

∫
Rn+
Gx(z)

{
n∏
i=1

(ziti)
1/2−λi Jλi−1/2(ziti) z

2λi
i

}
dz

=

∫
Rn+
e−
‖z‖2
2m

{
n∏
i=1

(xizi)
1/2−λi Jλi−1/2(xizi)

}{
n∏
i=1

(ziti)
1/2−λi Jλi−1/2(ziti)

}
z2λ dz

=

∫
Rn+
e−
‖z‖2
2m

{∫
Rn+

Dλ(x, t, ξ)

{
n∏
i=1

(ξizi)
1/2−λi Jλi−1/2(ξizi)

}
s(ξ) dξ

}
s(z) dz.
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Since∫
Rn+
e−
‖z‖2
2m

{∫
Rn+

Dλ(x, t, ξ)

{
n∏
i=1

|(ξizi)1/2−λi Jλi−1/2(ξizi)|

}
s(ξ) dξ

}
s(z) dz

≤ C−1
λ

∫
Rn+
e−
‖z‖2
2m

{∫
Rn+

Dλ(x, t, ξ) s(ξ) dξ

}
s(z) dz <∞,

it is possible to change the order of integration in (B.10), then

Hλ(Gx(z))(t)

=

∫
Rn+

{∫
Rn+
e−
‖z‖2
2m

{
n∏
i=1

(ξizi)
1/2−λi Jλi−1/2(ξizi)

}
s(z) dz

}
Dλ(x, t, ξ)s(ξ) dξ

= C−2
λ

∫
Rn+

{∫
Rn+
e−
‖z‖2
2m

{
n∏
i=1

Jλi−1/2(ξizi) z
λi+1/2
i

}
dz

}
Dλ(x, t, ξ) ξλ+1/2 dξ

= C−2
λ

∫
Rn+
ξλ−1/2 m|λ+1/2| e−

‖ξ‖2m
2 Dλ(x, t, ξ) ξλ+1/2 dξ

= C−1
λ

∫
Rn+
m|λ+1/2| e−

‖ξ‖2m
2 Dλ(x, t, ξ) s(ξ) dξ,

where we have used (A.4) with a = 1/m. From the last equality we obtain that∫
Rn+
Hλ(Gx(z))(t) f(t) t2λ dt(B.11)

=

∫
Rn+

{
C−1
λ

∫
Rn+
m|λ+1/2| e−

‖ξ‖2m
2 Dλ(x, t, ξ) s(ξ) dξ

}
f(t) t2λ dt

=

∫
Rn+

{∫
Rn+
m|λ+1/2| e−

‖ξ‖2m
2 Dλ(x, t, ξ) s(ξ) dξ

}
f(t) s(t) dt

= φm#f(x).

From (B.9) and (B.11) we obtain (B.7). We may now take limit in (B.7),
and considering that Hλf ∈ L1(s) and∣∣∣∣∣e− ‖z‖22m

{
n∏
i=1

(zixi)
1/2−λi Jλi−1/2(zixi)

}
Hλ(f)(z)

∣∣∣∣∣
≤ C−1

λ e−
‖z‖2
2m |Hλ(f)(z)| ≤ C |Hλ(f)(z)| ,

then we obtain in the right side of (B.7) by the dominated convergence theorem
that

lim
m→∞

∫
Rn+
Hλ(f)(z) e−

‖z‖2
2m

{
n∏
i=1

(zixi)
1/2−λi Jλi−1/2(zixi)

}
z2λ dz(B.12)
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=

∫
Rn+
Hλ(f)(z)

{
n∏
i=1

(zixi)
1/2−λi Jλi−1/2(zixi)

}
z2λ dz

= Hλ(Hλf)(x).

So,

(B.13) lim
m→∞

φm#f(x) = Hλ(Hλf)(x).

On the other hand, by (B.3) there exists a subsequence {φmk#f}k∈N such
that

(B.14) lim
k→∞

φmk#f(x) = f(x)

for almost every x ∈ Rn+, and so this completes the proof. �

From Theorem B.5 we can obtain the inversion theorem for the Hankel
transform hλ given by (2.9)

B.1. Proof of Theorem 2.13

Proof. If f ∈ L1(Rn+, xλ), then x−λf ∈ L1(s).
Since

x−λhλ(f) = Hλ(x−λf)

and for hypothesis

hλf ∈ L1(Rn+, xλ),

we have Hλ(x−λf) ∈ L1(s).
Then the result continues to apply Theorem B.5 to x−λf and obtain (2.31).

�

Lemma B.6. Let f, g be functions in L1(sr). Then∫
Rn+
hλf(t) g(t) dt =

∫
Rn+
f(t)hλg(t) dt.

Appendix C. Similarity of Bessel operators

Remark C.1. The operators Bλ and ∆λ given by (1.2) and (1.1), respectively,
are related through

(C.1) ∆λ = xλBλx
−λ.

Let φ ∈ C2(Rn+). Then

x−λ(−∆λ)xλφ(x) = x−λ

(
n∑
i=1

∂2

∂x2
i

− λi(λi − 1)

x2
i

)
xλφ(x)

=

n∑
i=1

x−λ
∂2

∂x2
i

xλφ(x)−
n∑
i=1

λi(λi − 1)

x2
i

φ(x)
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and also

x−λ
∂2

∂x2
i

{xλφ(x)} = x−λxλx−λii

∂2

∂x2
i

{xλii φ(x)} = x−λii

∂2

∂x2
i

{xλii φ(x)}

= x−λii

∂

∂xi
{λi xλi−1

i φ(x) + xλii
∂

∂xi
φ(x)}

= x−λii {λi(λi − 1) xλi−2
i φ(x) + λi x

λi−1
i

∂

∂xi
φ(x)

+ λi x
λi−1
i

∂

∂xi
φ(x) + xλii

∂2

∂x2
i

φ(x)}

= λi(λi − 1) x−2
i φ(x) + 2λi x

−1
i

∂

∂xi
φ(x) +

∂2

∂x2
i

φ(x),

from where

x−λ(−∆λ)xλφ(x) =

n∑
i=1

x−λ
∂2

∂x2
i

xλφ(x)−
n∑
i=1

λi(λi − 1)

x2
i

φ(x)

=

n∑
i=1

λi(λi − 1) x−2
i φ(x) + 2λi x

−1
i

∂

∂xi
φ(x) +

∂2

∂x2
i

φ(x)

−
n∑
i=1

λi(λi − 1)

x2
i

φ(x)

=

n∑
i=1

2λi x
−1
i

∂

∂xi
φ(x) +

∂2

∂x2
i

φ(x) = (−Bλ)φ(x).
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