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PASCAL’S HEXAGON THEOREM

REPROVED BY ELEMENTARY TOOLS ONLY

Insong Choe

Abstract. In this paper, we prove Pascal’s hexagon theorem by elemen-

tary tools only. We follow the well-known route to prove the theorem by
Bezóut’s theorem, explaining all the details in elementary argument. In

particular, we prove a toy version of Study’s lemma.

1. Introduction

Blaise Pascal’s mystic hexagon theorem ([3], [4]) states that if six arbitrary
points are chosen on a smooth conic curve and joined by line segments in any
order to form a hexagon, then the three pairs of opposite sides of the hexagon,
extended if necessary, meet at three points which lie on a straight line, called
the Pascal line of the hexagon. The most famous picture of the theorem is the
ellipse version as given in Figure 1. The pascal line in this picture is the line
through P,Q, and R.

Figure 1.
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Among the various proofs, there is a way to prove by using Bezóut’s theorem.
For example, one can use M. Noether’s theorem ([2, §5.6]) which is a variant
of Bezóut’s theorem.

A simpler version of proof suggested by Plücker goes as follows (see [5, p. 20]):
Let h1(x, y) and h2(x, y) be the cubic polynomials defining the union of three

lines
←−−→
A1B2,

←−−→
A2B3,

←−−→
A3B1 and

←−−→
A1B3,

←−−→
A2B1,

←−−→
A3B2, respectively. Symbolically,

we can write:

h1 =
←−−→
A1B2 ·

←−−→
A2B3 ·

←−−→
A3B1,

h2 =
←−−→
A1B3 ·

←−−→
A2B1 ·

←−−→
A3B2.

(1.1)

Let A0 be any point on the conic other than the six points. Then h := h1 +λh2
vanishes on A0 for a suitable constant λ. Now the cubic polynomial h vanishes
at the seven points A1, A2, A3, B1, B2, B3, and A0. But by Bezóut’s theorem,
the number of intersection points of a conic and a cubic is bounded from above
by six, provided that it is finite. (∗) “Therefore, the cubic polynomial h(x, y)
defines a reducible curve consisting of the conic and a line, say L. Note that
h(x, y) also vanishes at the three points P,Q,R in Figure 1. Hence they must
lie on the line L.”

This proof is simple and elegant, and provides a nice connection between
projective geometry and algebraic geometry. But we note that some of the
steps of the proof require techniques outside “elementary” level. In particular,
to guarantee (∗), we need the following result:

Proposition 1.1 (Study’s lemma). Let k be an algebraically closed field, f, g ∈
k[x, y] be polynomials with f irreducible. If all the zeros of f are contained in
the zeros of g, then f divides g in k[x, y].

The requirement that k being algebraically closed is necessary, and logically
speaking, we need to pass to the complexified polynomials defining the conic
and cubic in order to use the Study’s lemma. Also, to show this, one must
either invoke to the Nullstelensatz (a stronger form of Study’s lemma) or use
the technique of ring theory, including resultants. In this sense, the standard
proof via Study’s lemma lies on a little higher level than elementary.

The goal of this short note is to give a completely elementary argument to
prove Pascal’s hexagon theorem (over R). The idea is not different from the
above line of proof, but we observe that in our context all the machinery boils
down to the theory of polynomials in single variable. We expect this can be
used to illustrate a seed idea of polynomial ring theory and algebraic geometry
to the university students.

We remark that there are algebraic proofs which consider an intersection of
two cubics ([1, II §6]) and Cayley-Bacharach’s theorem ([6, pp. 241–242]). Also
there is another simple proof based on the homogeneous coordinates and cross
product ([7]).
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2. Proof

First we show the following special case of Bezóut’s theorem.

Lemma 2.1. Let C be the smooth plane conic curve. Let H be any curve
defined by a polynomial equation of degree d. If C is not contained in H, then
the number ](C ∩H) of intersection points is finite and ](C ∩H) ≤ 2d.

Proof. Suppose that C and H are defined by a qudratic q(x, y) and an equation
h(x, y) of degree d, respectively.

As well-known, C has a rational parameterization: This is given by fixing a
point P0 = (x0, y0) ∈ C and considering a pencil of lines

Lt : y = t(x− x0) + y0

passing through P0. By a linear change of coordinates, we may assume that
the tangent line at P0 is parallel to the y-axis. Then by associating to each t
the intersection point C ∩Lt other than P0, we get a map α : U → C for some
nonempty open subset U ⊂ R. This is an injective map which is surjective onto
C \ {P0}, since C is a conic curve. Algebraically, we first plug in the equation
of Lt to q(x, y):

q(x, t(x− x0) + y0) = 0

and then find a linear factor other than x− x0. This gives a formula

α(t) =

(
p1(t)

p3(t)
,
p2(t)

p3(t)

)
for some polynomials p1, p2, p3 of degree ≤ 2.

Assume that C is not contained in H and ](C ∩H) > 2d. We choose P0 ∈
C \ H. Note that every intersection point satisfies the equation h(α(t)) = 0.
Clearing its common denominators, we get a polynomial equation of degree ≤
2d. From the assumption that ](C ∩H) > 2d, we have an identity h(α(t)) ≡ 0.
This implies that C \ {P0} ⊂ H and also P0 ∈ H by taking limit. This is a
contradiction. �

Next we show the following result which is a special case of Study’s lemma.

Lemma 2.2. Let C be a smooth conic curve defined by a quadratic equation
q(x, y) = 0. Let H be a curve defined by a cubic equation h(x, y) = 0. If
C is contained in H, then q(x, y) divides h(x, y) in R[x, y], in other words,
h(x, y) = q(x, y)`(x, y) for some linear polynomial `(x, y).

Proof. Under a suitable linear change of coordinates,1 we may assume that

q(x, y) = y2 + a1(x)y + a2(x),

h(x, y) = y3 + b1(x)y2 + b2(x)y + b3(x),

1This amounts to moving the curves C and H so that their projectivizations avoid the

point [0 : 1 : 0].
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where ai(x) and bi(x) are polynomials of degree ≤ i. Fix any x0 ∈ R such that
(x0, y0) ∈ C for some y0. Since q̃(y) := q(x0, y) is quadratic in y having a real
zero, it factorized into a product of linear polynomials. Since C is contained in

H, all the zeros of q̃(y) are also zeros of h̃(y) := h(x0, y). Therefore,

h̃(y) = q̃(y) · (y + c1)

for some c1 ∈ R. By comparing the coefficients of y2, we have c1 = b1(x0) −
a1(x0). Hence the following identity hold:

h(x0, y) = q(x0, y) · (y + b1(x0)− a1(x0)).

Since the projection map (x, y) 7→ x of the curve C to the x-axis has an image
containing an interval, the above polynomial identity holds for any x0 ∈ R, and
we get an identity:

(2.1) h(x, y) = q(x, y) · (y + b1(x)− a1(x)).

This shows that the cubic equation h(x, y) = 0 defines a union of the conic C
and a line. �

Now we can give a proof of Pascal’s theorem. Let h1(x, y) and h2(x, y) be the
cubic polynomials as in (1.1). Let H be the cubic curve defined by h = h1+λh2
for some λ which passes through all the seven points A1, A2, A3, B1, B2, B3, and
A0 of C. By Lemma 2.1, ](C∩H) ≤ 6 if it is finite, thus C must be contained in
H. By Lemma 2.2, h(x, y) factorizes into a product of the quadratic polynomial
q(x, y) defining C and a linear polynomial defining a line, say L. Since the
points P,Q,R in Figure 1 lie on H, they must lie on the line L. This completes
the proof of Pascal’s theorem.

Remark 2.3. (1) The procedure shows how to reformulate the problem in k[x, y]
into a problem in k[y], and then go back to the original one. This can be thought
as a baby example of the elimination theory.

(2) The above algebraic proof still works when C is a degenerate conic given
by a pair of two distinct lines. The point is that there are infinitely many x0’s
such that (x0, y0) ∈ C for some y0. When C is a pair of distinct lines, Pascal’s
theorem reduces to the celebrated Pappus’ theorem.

Acknowledgement. We would like to thank the referee for a suggestion to
clarify the argument to show the identity (2.1). This led us to devise an even
simpler way which does not rely on the matrix argument in the earlier version.
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