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COMMON FIXED POINT RESULTS FOR GENERALIZED

ORTHOGONAL F -SUZUKI CONTRACTION FOR FAMILY

OF MULTIVALUED MAPPINGS IN ORTHOGONAL

b-METRIC SPACES

Bahru Tsegaye Leyew and Oluwatosin Temitope Mewomo

Abstract. In this paper, we introduce a new class of mappings called the

generalized orthogonal F -Suzuki contraction for a family of multivalued

mappings in the setup of orthogonal b-metric spaces. We established the
existence of some common fixed point results without using any commu-

tativity condition for this new class of mappings in orthogonal b-metric

spaces. Moreover, we illustrate and support these common fixed point
results with example. The results obtained in this work generalize and

extend some recent and classical related results in the existing literature.

1. Introduction and preliminaries

Fixed point theory is one of the most powerful and fruitful tools of modern
mathematics and may be considered a core subject of nonlinear analysis. In
the last 50 years, fixed point theory has been a flourishing area of research for
many mathematicians. The origins of the theory, which date to the later part of
the nineteenth century, rest in the use of successive approximations to establish
the existence and uniqueness of solutions, particularly to differential equations.
Since the simplicity and usefulness of the Banach’s fixed point theorem, many
authors have extended, improved and generalized Banach’s fixed point theorem
from different perspectives. For more details, we cite the readers to (see [1,6,7,
9,12,14,17–20,31] and the references therein. The approximation of fixed points
of nonlinear mappings and solutions of optimization problems is another area
of research interest in fixed point theory (see [5, 23, 24, 30] and the references
therein).

The concept of a b-metric space was introduced by Bakhtin [7] and Czerwik
[12]. They also established the fixed point result in the setting of b-metric spaces
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which is a generalization of the Banach contraction principle. In 2015, Alsulami
et al. [6] introduced the concepts of generalized F -Suzuki type contraction
mappings and proved the fixed point theorems on complete b-metric spaces.

The existence of fixed points in partially ordered metric spaces was first
investigated in 2004 by Ran and Reurings [26], and then by Nieto and Lopez
[21,22].

In [15], Gordji et al. introduced the new notion of the orthogonal sets and
gave a real generalization of Banach’s fixed point theorem. As an application,
they studied the existence and uniqueness of solution for a first-order ordinary
differential equation, while the Banach contraction mapping principle cannot
be applied in this situation. Afterward Yang et al. [33] introduced the notion
of an orthogonal (F,ψ)-contraction of Hardy-Rogers-type mapping and proved
some fixed point theorem for such contraction mappings in orthogonally metric
spaces. Sawangsup et al. [28] introduced the new concept of an orthogonal
F -contraction mappings and proved the fixed point theorems on orthogonal-
complete metric spaces. Subsequently, many other researchers (see [13, 14,
33]) studied the orthogonal contractive type mappings and obtained significant
results.

Recently, Abbas et al. [2] proved the existence of common fixed points of
family of multivalued generalized F -contraction mappings without using any
commutativity condition in the setup of partially ordered metric space.

The objective of this paper is to introduce a new concept of generalized
orthogonal F -Suzuki contraction of a family of multivalued mappings in the
setup of orthogonal b-metric space which generalizes some well-known results
in the literature, especially [2]. In this paper, we present an improvement and
generalization of the main results in the existing literature (see [3, 16,27,29]).

Throughout this paper, N, N0, R and R+ denote the set of natural numbers,
the set of nonnegative integer numbers, the set of real numbers and the set of
positive real numbers, respectively.

Consistent with [2, 9, 12, 15, 28], the following definitions and results will be
needed in the sequel.

Definition 1.1 ([7]). Let X be a nonempty set and b ≥ 1. A mapping d :
X × X → [0,∞) is said to be a b-metric if for all x, y, z ∈ X the following
conditions are satisfied:

(b1) d(x, y) = 0 if and only if x = y;
(b2) d(x, y) = d(y, x);
(b3) d(x, y) ≤ b [d(x, z) + d(z, y)].

Then, the pair (X, d) is called a b-metric space with the coefficient b.

It is an obvious fact that a metric space is also a b-metric space with constant
b = 1, but the converse is not generally true. To support this fact, we have the
following example.
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Example 1.1 ([12]). Consider the set X = [0, 1] endowed with the function
d : X × X → [0,∞) defined by d(x, y) = |x − y|2 for all x, y ∈ X. Clearly,
(X, d) is a b-metric space with b = 2 but it is not a metric space.

Definition 1.2 ([10]). Let (X, d) be a b-metric space with constant b. The
following notions are natural deductions from their metric counterparts.

(i) A sequence {xn}∞n=1 in X converges if and only if there exists x ∈ X
such that limn→∞ d(xn, x) = 0. In this case, we write limn→∞ xn = x.

(ii) A sequence {xn}∞n=1 in X is called a Cauchy sequence if and only if
for every ε > 0, there exists nε ∈ N such that d(xn, xm) < ε for all
m,n ≥ nε. In this case, we write limn,m→∞ d(xn, xm) = 0.

(iii) A b-metric space (X, d) with constant b is said to be complete if and
only if each Cauchy sequence in X converges to some x ∈ X.

Remark 1.2 ([10]). Notice that in a b-metric space (X, d) the following state-
ments hold:

(i) a convergent sequence has a unique limit;
(ii) each convergent sequence is Cauchy;
(iii) in general, a b-metric is not continuous;
(iv) in general, a b-metric does not induce a topology on X.

Definition 1.3 ([6]). Let (X, dX) and (Y, dY ) be b-metric spaces; a mapping
f : X → Y is called:

(i) continuous at a point x ∈ X, if for every sequence {xn}∞n=1 in X such
that limn→∞ dX(xn, x) = 0, then limn→∞ dY (f(xn), f(x)) = 0.

(ii) continuous on X, if it is continuous at each point x ∈ X.

Since in general a b-metric is not continuous, we need the following simple
lemma about the b-convergent sequences in the proof of our main result.

Lemma 1.3 ([4]). Let (X, d) be a b-metric space with b ≥ 1, and suppose that
{xn} and {yn} are b-convergent to x, y, respectively. Then we have

1

b2
d(x, y) ≤ lim inf

n→∞
d(xn, yn) ≤ lim sup

n→∞
d(xn, yn) ≤ b2d(x, y).

In particular, if x = y, then we have limn→∞ d(xn, yn) = 0. Moreover, for each
z ∈ X, we have

1

b
d(x, z) ≤ lim inf

n→∞
d(xn, z) ≤ lim sup

n→∞
d(xn, z) ≤ bd(x, z).

In 1922, Banach [8] proved Banach fixed point theorem as follows:

Theorem 1.4 ([8]). Let (X, d) be a complete metric space and T : X → X
be a contraction mapping, that is, there exists k ∈ [0, 1) such that d(Tx, Ty) ≤
kd(x, y) for all x, y ∈ X. Then, we have the following assertions hold: (i) T
has a unique fixed point; (ii) for each x0 ∈ X, the sequence {xn} defined by
xn+1 = Txn for each n ≥ 0 converges to the fixed point of T .
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In 2004, Ran and Reurings [26] extended the Banach’s fixed point theorem
to the setting of partially ordered sets as follows:

Theorem 1.5 ([26]). Let (X,�, d) be a complete partially ordered metric space.
Suppose that T : X → X is a continuous and monotone mapping such that the
following conditions hold: (i) there exists k ∈ [0, 1) such that d(Tx, Ty) ≤
kd(x, y) for all x, y ∈ X with x � y; (ii) there exists x0 � T (x0) or x0 � T (x0).
Then, T has a unique fixed point in X. Moreover, the Picard sequence {Tnx0}
converges to the fixed point of T .

After that, Nieto and Rodŕıguez [21] showed that Theorem 1.5 is still valid
for T not necessarily continuous as follows:

Theorem 1.6 ([21]). Let (X,�, d) be a complete partially ordered metric space.
Suppose that T : X → X is a monotone nondecreasing mapping such that the
following conditions hold: (i) there exists k ∈ [0, 1) such that d(Tx, Ty) ≤
kd(x, y) for all x, y ∈ X with x � y; (ii) there exists x0 � T (x0). (iii) if
{xn} ⊆ X is a nondecreasing sequence such that xn → x in X, then xn � x
for all n ∈ N. Then, T has a unique fixed point in X. Moreover, the Picard
sequence {Tnx0} converges to the fixed point of T .

Definition 1.4 ([31]). Let F be the family of all functions F : R+ → R such
that:

(F1) F is strictly increasing, i.e., for all a, b ∈ R+ such that F (a) < F (b)
whenever a < b;

(F2) for each sequence {an}∞n=1 ⊂ R+, limn→∞ an = 0 if and only if
limn→∞ F (an) = −∞;

(F3) there exists k ∈ (0, 1) such that lima→0+ a
kF (a) = 0.

Now let us review definitions of F -contraction mappings and some results
on F -contraction mappings, related to the existing literature.

Definition 1.5 ([31]). Let (X, d) be a metric space. A mapping T : X → X
is said to be an F -contraction on (X, d) if there exist F ∈ F and τ > 0 such
that, for all x, y ∈ X,

d(Tx, Ty) > 0⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)).

Wardowski [31] gave a generalization of Banach contraction principle as
follows.

Theorem 1.7 ([31]). Let (X, d) be a complete metric space and T : X → X
be an F -contraction mapping. Then T has a unique fixed point u ∈ X and for
every x ∈ X the sequence {Tnx}∞n=1 converges to u.

In 2014, Wardowski and Dung [32] introduced the notion of an F -weak
contraction and proved a related fixed point theorem as follows.
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Definition 1.6 ([32]). Let (X, d) be a metric space. A mapping T : X → X
is said to be an F -weak contraction on (X, d) if there exist F ∈ F and τ > 0
such that, for all x, y ∈ X,

d(Tx, Ty) > 0⇒ τ + F (d(T (x), T (y)) ≤ F (M(x, y)),

where M(x, y) = max
{
d(x, y), d(x, Tx), d(y, Ty), d(x,Ty)+d(y,Tx)

2

}
.

Theorem 1.8 ([32]). Let (X, d) be a complete metric space and let T : X → X
be an F -weak contraction mapping. If T or F is continuous, then T has a
unique fixed point u ∈ X and for every x ∈ X the sequence {Tnx}∞n=1 converges
to u.

In 2014, Piri and Kumam [25] described a large class of functions by re-
placing the condition (F3) in the definition of an F -contraction introduced by
Wardowski [31] with the following one:

(F3)′ F is continuous on R+.

They denote by F the family of all functions F : R+ → R which satisfy
conditions (F1), (F2), and (F3′). Under this new set-up, Piri and Kumam
proved some Wardowski and Suzuki type fixed point results in metric spaces
as follows.

Theorem 1.9 ([25]). Let (X, d) be a complete metric space and let T : X → X
be a self-mapping. Suppose that there exist F ∈ F and τ > 0 such that, for all
x, y ∈ X,

d(Tx, Ty) > 0⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)).

Then T has a unique fixed point u ∈ X and for every x ∈ X the sequence
{Tnx}∞n=1 converges to u.

Theorem 1.10 ([25]). Let (X, d) be a complete metric space and let T : X → X
be a self-mapping. Suppose that there exist F ∈ F and τ > 0 such that, for all
x, y ∈ X with x 6= y,

1

2
d(x, Tx) < d(x, y)⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)).

Then T has a unique fixed point u ∈ X and for every x ∈ X the sequence
{Tnx}∞n=1 converges to u.

Recently, Gordji et al. [15] introduced the new concept of an orthogonality
in metric spaces and proved the fixed point result for contraction mappings in
metric spaces endowed with this new type of orthogonality.

Definition 1.7. Let X 6= ∅ and ⊥⊂ X ×X be a binary relation. If ⊥ satisfies
the following condition:

∃x0 ∈ X [(∀x ∈ X,x ⊥ x0) or (∀x ∈ X,x0 ⊥ x)] ,

then it is called an orthogonal set (briefly O-set) and x0 is called an orthogonal
element. We denote this O-set by (X,⊥).
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Example 1.11 ([15]). (i) Let X be the set of all people in the world. Define
the binary relation ⊥ on X by x ⊥ y if x can give blood to y. If x0 is a person
such that his (her) blood type is O−, then we have x0 ⊥ y for all y ∈ X. This
means that (X,⊥) is an O-set. In this O-set, x0 (in definition) is not unique.
Note that x0 may be a person with blood type AB+. In this case, we have
y ⊥ x0 for all y ∈ X.

(ii) In graph theory, a wheel graph Wn is a graph with n vertices for each
n ≥ 4, formed by connecting a single vertex to all vertices of an (n− 1)-cycle.
Let X be the set of all vertices of Wn for each n ≥ 4. Define a ⊥ b if there is a
connection from a to b. Then (X,⊥) is an O-set.

(iii) Let X = Z. Define m ⊥ n if there exists k ∈ Z such that m = kn. It is
easy to see that 0 ⊥ n for all n ∈ Z. Hence (X,⊥) is an O-set.

Definition 1.8 ([15]). Let (X,⊥) be an O-set. A sequence {xn} is called an
orthogonal sequence (briefly, O-sequence) if

(∀n ∈ N, xn ⊥ xn+1) or (∀n ∈ N, xn+1 ⊥ xn) .

Definition 1.9 ([15]). The triplet (X,⊥, d) is called an orthogonal metric
space if (X,⊥) is an O-set and (X, d) is a metric space.

Definition 1.10 ([15]). Let (X,⊥, d) be an orthogonal metric space. Then a
mapping T : X → X is said to be orthogonally continuous (or ⊥-continuous)
in x ∈ X if for each O-sequence {xn} ⊂ X with xn → x as n → ∞, we
have Txn → Tx as n → ∞. Also, T is said to be ⊥-continuous on X if T is
⊥-continuous in each x ∈ X.

Note that every continuous mapping is ⊥-continuous, but the converse is
not true.

Definition 1.11 ([15]). Let (X,⊥) be an O-set. A mapping T : X → X is
said to be ⊥-preserving if T (x) ⊥ T (y) if x ⊥ y. Also, T : X → X is said to be
weakly ⊥-preserving if T (x) ⊥ T (y) or T (y) ⊥ T (x) if x ⊥ y.

Definition 1.12 ([15]). Let (X,⊥, d) be an orthogonal metric space. Then
X is said to be orthogonally complete (briefly, O-complete) if every Cauchy
O-sequence is convergent.

Also, note that every complete metric space is O-complete and the converse
is not true.

In 2017, Gordji et al. [15] prove the following theorem:

Theorem 1.12. Let (X,⊥, d) be an O-complete metric space. Suppose that
T : X → X is a ⊥-continuous mapping such that the following conditions hold:
(i) there exists k ∈ [0, 1) such that d(Tx, Ty) ≤ kd(x, y) for all x, y ∈ X with
x ⊥ y; (ii) T is ⊥-preserving. Then T has a unique fixed point u ∈ X such that
for each x ∈ X, the sequence {Tnx} converges to u.

For a nonempty set X, let P (X) and CL(X) be the family of all nonempty
and nonempty and closed subsets of X, respectively.
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A point u ∈ X is a fixed point of a multivalued mapping T : X → P (X)
if and only if u ∈ Tu. The set of all fixed points of multivalued mapping
T is denoted by Fix(T ). The idea of common fixed point theorems for a
family of multivalued generalized F -contraction mappings without using any
commutativity condition in the setup of partially ordered metric spaces is due
to Abbas et al. [2].

Definition 1.13 ([2]). Let (X,�) be a partially ordered set. Define

41 = {(x, y) ∈ X ×X : x � y}

and

42 = {(x, y) ∈ X ×X : x ≺ y or y ≺ x}.
That is, 42 is the set of all comparable elements of X.

A subset K of a partially ordered set X is said to be well ordered if every
two elements of K are comparable. Recently, Abbas et al. [2] introduced Fj-
contraction family for j = 1 and j = 2 and then proved the existence of common
fixed point of such contractions.

Definition 1.14 ([2]). Let {Ti}mi=1 be a family of mappings such that Ti :
X → CL(X) for each i ∈ {1, 2, . . . ,m} and Tm+1 = T1. The set {Ti}mi=1 is said
to be

1) an F1-contraction family, whenever for any x, y ∈ X with (x, y) ∈ 41

and ux ∈ Ti(x), there exists uy ∈ Ti+1(y) for i ∈ {1, 2, . . . ,m} with
(ux, uy) ∈ 42 such that the following condition holds

(1.1) τ(U(x, y;ux, uy)) + F (d(ux, uy)) ≤ F (U(x, y;ux, uy)),

where τ : R+ → R+ is a mapping with lim infs→t+ τ(s) ≥ 0 for all t ≥ 0
and

U(x, y;ux, uy) = max
{
d(x, y), d(x, ux), d(y, uy),

d(x,uy)+d(y,ux)
2

}
.

2) an F2-contraction family, whenever for any x, y ∈ X with (x, y) ∈ 41

and ux ∈ Ti(x), there exists uy ∈ Ti+1(y) for i ∈ {1, 2, . . . ,m} with
(ux, uy) ∈ 42 such that the following condition holds

(1.2) τ(V (x, y;ux, uy)) + F (d(ux, uy)) ≤ F (V (x, y;ux, uy)),

where τ : R+ → R+ is a mapping with lim infs→t+ τ(s) ≥ 0 for all t ≥ 0
and

V (x, y;ux, uy) = αd(x, y) + βd(x, ux) + γd(y, uy) + δ1d(x, uy) + δ2d(y, ux)

for α, β, γ, δ1, δ2 ≥ 0, δ1 ≤ δ2 with α+ β + γ + δ1 + δ2 ≤ 1.

Remember that T : X → CL(X) is said to be upper semi-continuous, if for
xn ∈ X and yn ∈ Txn with xn → x0 and yn → y0, then we have y0 ∈ Tx0.
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Theorem 1.13 ([2]). Let (X, d,�) be a partially ordered complete metric space
and {Ti}mi=1 an F1-contraction family of multivalued mappings. Then, the fol-
lowing hold:

(i) Fix(Ti) 6= ∅ for any i ∈ {1, 2, . . . ,m} if and only if
Fix(T1) = Fix(T2) = · · · = Fix(Tm) 6= ∅.

(ii) Fix(T1) = Fix(T2) = · · · = Fix(Tm) 6= ∅ provided that there exists
some x0 ∈ X such that {x0} �1 Tk(x0) for any k ∈ {1, 2, . . . ,m} and
any one of Ti is upper semi-continuous for i ∈ {1, 2, . . . ,m}.

(iii) ∩mi=1Fix(Ti) is well ordered if and only if ∩mi=1Fix(Ti) is a singleton
set.

Theorem 1.14 ([2]). Let (X, d,�) be a partially ordered complete metric space
and {Ti}mi=1 an F2-contraction family of multivalued mappings. Then, the fol-
lowing hold:

(i) Fix(Ti) 6= ∅ for any i ∈ {1, 2, . . . ,m} if and only if
Fix(T1) = Fix(T2) = · · · = Fix(Tm) 6= ∅.

(ii) Fix(T1) = Fix(T2) = · · · = Fix(Tm) 6= ∅ provided that there exists
some x0 ∈ X such that {x0} �1 Tk(x0) for any k ∈ {1, 2, . . . ,m} and
any one of Ti is upper semi-continuous for i ∈ {1, 2, . . . ,m}.

(iii) ∩mi=1Fix(Ti) is well ordered if and only if ∩mi=1Fix(Ti) is a singleton
set.

2. Existence of common fixed point results

In this section we state and prove our main results. Throughout the paper,
we assume that b-metric is continuous and define 0

0 := 0.
We use FT to denote the set of all functions F : R+ → R which satisfy

conditions (F1) and (F3′) and Φ to denote the set of all functions ϕ : [0,∞)→
[0,∞) such that ϕ is lower semi-continuous and ϕ(t) = 0 if and only if t = 0.

Inspired by the notion of Fj-contraction family of multivalued mappings for
j = 1 and j = 2, defined by Abbas et al. [2], we introduce the notion of gen-
eralized orthogonal F -Suzuki type contraction family of multivalued mappings
and prove the existence of some common fixed point theorems for a family of
multivalued generalized orthogonal F -Suzuki type contraction mappings with-
out using any commutativity condition in the framework of orthogonal b-metric
spaces as follows.

Definition 2.1. Let (X,⊥) be an orthogonal set (briefly, O-set), Y and Z two
nonempty subsets of (X,⊥). We say that Y ⊥1 Z, whenever for every y ∈ Y ,
there exists z ∈ Z such that y ⊥ z.

Definition 2.2. Let (X,⊥) be an orthogonal set. Define

⊥41 = {(x, y) ∈ X ×X : x ⊥ y}
and

⊥42 = {(x, y) ∈ X ×X : x ⊥ y or y ⊥ x}.
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That is, ⊥42 is the set of all orthogonable elements of X.

We define that a subset A of an orthogonal set X is said to be well orthogonal
if (x, y) ∈ ⊥42 for every x, y ∈ A.

Definition 2.3. Let (X,⊥) be an orthogonal set and Ti : X → P (X) mul-
tivalued mappings for each i ∈ {1, 2, . . . ,m} and Tm+1 = T1. The family of
mappings {Ti}mi=1 is said to be orthogonal preserving (briefly, ⊥-preserving) if
for any x, y ∈ X with (x, y) ∈ ⊥41 and ux ∈ Ti(x), there exists uy ∈ Ti+1(y)
for i ∈ {1, 2, . . . ,m} with (ux, uy) ∈ ⊥42.

Definition 2.4. Let (X, d,⊥) be an orthogonal b-metric space. Let Ti : X →
CL(X) for each i ∈ {1, 2, . . . ,m} and Tm+1 = T1. The set {Ti}mi=1 is said to
be a generalized orthogonal F -Suzuki contraction family if for any x, y ∈ X
with x 6= y, (x, y) ∈ ⊥41 and ux ∈ Ti(x), there exists uy ∈ Ti+1(y) for
i ∈ {1, 2, . . . ,m} with (ux, uy) ∈ ⊥42 and there exists F ∈ FT such that the
following condition holds

1

2b
d(x, ux) < d(x, y)

⇒ F (b5d(ux, uy)) ≤ F (MT (x, y;ux, uy))− ϕ(MT (x, y;ux, uy))(2.1)

in which ϕ ∈ Φ and

MT (x, y;ux, uy) = max{d(x, y), d(x, ux), d(y, uy), 1
2bd(x, uy),

d(y, ux), (d(x, y))−1d(x, ux)d(y, uy)}.

Remark 2.1. (i) If ⊥≡� such that (X,�) is a partial ordered set and ϕ = τ ,
then Equation (2.1) of Definition 2.4 reduced to Equation (1.1) of Definition
1.14 in [2] since U(x, y;ux, uy) ≤MT (x, y;ux, uy).

(ii) If ⊥≡� such that (X,�) is a partial ordered set and ϕ = τ , then
Equation (2.1) of Definition 2.4 reduced to Equation (1.2) of Definition 1.14 in
[2] since V (x, y;ux, uy) ≤MT (x, y;ux, uy) as α+ β + γ + δ1 + δ2 ≤ 1.

From this remark, we deduce that generalized orthogonal F -Suzuki con-
traction family of multivalued mappings comprise F1-contraction family and
F2-contraction family of multivalued mappings.

A multivalued mapping T : X → CL(X) is said to be orthogonal upper
semi-continuous, if for orthogonal sequences {xn} ⊂ X and {yn} ⊂ Txn with
xn → x0 and yn → y0, then we have y0 ∈ Tx0.

Now we state the main result of this section.

Theorem 2.2. Let (X, d,⊥) be an O-complete b-metric space with constant
b ≥ 1 and an orthogonal element x0. Let Ti : X → CL(X) be a generalized
orthogonal F -Suzuki contraction family and ⊥-preserving. Then the following
hold:

(i) Fix(Ti) 6= ∅ for any i ∈ {1, 2, . . . ,m} if and only if Fix(T1) = Fix(T2)
= · · · = Fix(Tm) 6= ∅.
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(ii) Fix(T1) = Fix(T2) = · · · = Fix(Tm) 6= ∅ provided that any one of Ti
is orthogonal upper semi-continuous for i ∈ {1, 2, . . . ,m}.

(iii) ∩mi=1Fix(Ti) is well orthogonal if and only if ∩mi=1Fix(Ti) is a singleton
set.

Proof. At first, to prove (i): Suppose Fix(Tk) 6= ∅ for any k ∈ {1, 2, . . . ,m},
that is, there exists w ∈ Tk(w) for any k ∈ {1, 2, . . . ,m}. If w /∈ Tk+1(w), then
there exists a z ∈ Tk+1(w) with (w, z) ∈ ⊥42 and since d(w,w) = 0, then (2.1)
holds such that

F (d(w, z)) ≤ F (MT (w,w;w, z))− ϕ(MT (w,w;w, z))

holds, where

MT (w,w;w, z) = max{d(w,w), d(w,w), d(w, z), 1
2bd(w, z), d(w,w),

(d(w,w))−1d(w,w)d(w, z)} = d(w, z).

Thus, we have
F (d(w, z)) ≤ F (d(w, z))− ϕ(d(w, z)),

which is a contradiction as ϕ(d(w, z)) > 0. Thus w = z, that is, w ∈
Tk+1(w) and Fix(Tk) ⊆ Fix(Tk+1). Similarly, one can show that Fix(Tk+1) ⊆
Fix(Tk+2). Arguing this way, we obtain that Fix(T1) = Fix(T2) = · · · =
Fix(Tm) 6= ∅. The converse is obvious.

To prove (ii): Since (X,⊥) is an O-set,

∃x0 ∈ X : (x0, x) ∈ ⊥42, ∀x ∈ X.
Due to the fact that Tk(x) is a nonempty set for all x ∈ X and for any k ∈
{1, 2, . . . ,m}, it follows that {x0} ⊥1 Tk0

(x0) or Tk0
(x0) ⊥1 {x0} for any

k0 ∈ {1, 2, . . . ,m}. If x0 ∈ Tk0(x0), then we deduce that x0 is a fixed point
of Tk0 and so by (i), we conclude the proof is finished. Thus, we assume that
x0 /∈ Tk0

(x0) for any k0 ∈ {1, 2, . . . ,m}. Then d(x0, Tk0
(x0)) > 0 since Tk0

(x0)
is closed. For i ∈ {1, 2, . . . ,m}, x1 ∈ Ti(x0), there exists x2 ∈ Ti+1(x1) with
(x1, x2) ∈ ⊥42. Due to d(x0, x1) > 0, we have

1

2b
d(x0, x1) < d(x0, x1).

Thus, by assumption that {Ti}mi=1 is a generalized orthogonal F -Suzuki con-
traction family of multivalued mappings, we have

F (d(x1, x2)) ≤ F (MT (x0, x1;x1, x2))− ϕ(MT (x0, x1;x1, x2)),

where

MT (x0, x1;x1, x2) = max{d(x0, x1), d(x0, x1), d(x1, x2), 1
2bd(x0, x2), d(x1, x1),

(d(x0, x1))−1d(x0, x1)d(x1, x2)}

≤ max
{
d(x0, x1), d(x1, x2), d(x0,x1)+d(x1,x2)

2

}
= max {d(x0, x1), d(x1, x2)} .
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If max {d(x0, x1), d(x1, x2)} = d(x1, x2), then we have

F (d(x1, x2)) ≤ F (d(x1, x2))− ϕ(d(x1, x2)),

which is a contradiction (from d(x0, x1) > 0 and property of ϕ, we have
ϕ(d(x1, x2)) > 0). Thus, we conclude that

F (d(x1, x2)) ≤ F (d(x0, x1))− ϕ(d(x0, x1)).

Similarly, for the point x2 ∈ Ti+1(x1), there exists x3 ∈ Ti+2(x2) for i ∈
{1, 2, . . . ,m} with (x2, x3) ∈ ⊥42. Due to d(x1, x2) > 0, we have

1

2b
d(x1, x2) < d(x1, x2).

Thus, by assumption that {Ti}mi=1 is a generalized orthogonal F -Suzuki con-
traction family of multivalued mappings, we have

F (d(x2, x3)) ≤ F (MT (x1, x2;x2, x3))− ϕ(MT (x1, x2;x2, x3)),

where

MT (x1, x2;x2, x3) = max{d(x1, x2), d(x1, x2), d(x2, x3), 1
2bd(x1, x3), d(x2, x2),

(d(x1, x2))−1d(x1, x2)d(x2, x3)}

≤ max
{
d(x1, x2), d(x2, x3), d(x1,x2)+d(x2,x3)

2

}
= max {d(x1, x2), d(x2, x3)} .

If max {d(x1, x2), d(x2, x3)} = d(x2, x3), then we have

F (d(x2, x3)) ≤ F (d(x2, x3))− ϕ(d(x2, x3)),

which is a contradiction (from d(x1, x2) > 0 and property of ϕ, we have
ϕ(d(x2, x3)) > 0). Thus, we conclude that

F (d(x2, x3)) ≤ F (d(x1, x2))− ϕ(d(x1, x2)).

Continuing this approach, for x2n ∈ Ti(x2n−1), there exists x2n+1 ∈ Ti+1(x2n)
for i ∈ {1, 2, . . . ,m} with (x2n, x2n+1) ∈ ⊥42. Due to d(x2n−1, x2n) > 0, we
have

1

2b
d(x2n−1, x2n) < d(x2n−1, x2n).

Thus, by assumption that {Ti}mi=1 is a generalized orthogonal F -Suzuki con-
traction family of multivalued mappings, we have

F (d(x2n, x2n+1))

≤ F (MT (x2n−1, x2n;x2n, x2n+1))− ϕ(MT (x2n−1, x2n;x2n, x2n+1)),

that is,

F (d(x2n, x2n+1)) ≤ F (d(x2n−1, x2n))− ϕ(d(x2n−1, x2n)).
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Similarly, for x2n+1 ∈ Ti+1(x2n), there exists x2n+2 ∈ Ti+2(x2n+1) for i ∈
{1, 2, . . . ,m} with (x2n, x2n+1) ∈ ⊥42. Due to d(x2n, x2n+1) > 0, we have

1

2b
d(x2n, x2n+1) < d(x2n, x2n+1).

Thus, by assumption that {Ti}mi=1 is a generalized orthogonal F -Suzuki con-
traction family of multivalued mappings, we have

F (d(x2n+1, x2n+2)) ≤ F (d(x2n, x2n+1))− ϕ(d(x2n, x2n+1)).

Hence, we get a sequence {xn} in X such that xn ∈ Ti(xn−1) and xn+1 ∈
Ti+1(xn) with (xn, xn+1) ∈ ⊥42 which implies that {xn} is an orthogonal
sequence for all n ∈ N0.

If xk ∈ Ti(xk) for some k ∈ N0 and all i ∈ {1, 2, . . . ,m}, then Fix(Ti) 6= ∅,
which completes the proof. So, we may assume that xn /∈ Ti(xn) for all n ∈ N0.
Then due to d(xn−1, xn) > 0 for all n ∈ N, we have

1

2b
d(xn−1, xn) < d(xn−1, xn).

Thus, by assumption that {Ti}mi=1 is a generalized orthogonal F -Suzuki con-
traction family of multivalued mappings, we have

F (d(xn, xn+1))

≤ F (MT (xn−1, xn;xn, xn+1))− ϕ(MT (xn−1, xn;xn, xn+1)).

Since

MT (xn−1, xn;xn, xn+1)

= max{d(xn−1, xn), d(xn−1, xn), d(xn, xn+1), 1
2bd(xn−1, xn+1),

d(xn, xn), (d(xn−1, xn))−1d(xn−1, xn)d(xn, xn+1)}

≤ max
{
d(xn−1, xn), d(xn, xn+1), d(xn−1,xn)+d(xn,xn+1)

2

}
= max {d(xn−1, xn), d(xn, xn+1)} ,

we obtain

F (d(xn, xn+1)) ≤ F (max {d(xn−1, xn), d(xn, xn+1)})
− ϕ(max {d(xn−1, xn), d(xn, xn+1)}).(2.2)

If max {d(xn−1, xn), d(xn, xn+1)} = d(xn, xn+1), so (2.2) becomes

F (d(xn, xn+1)) ≤ F (d(xn, xn+1))− ϕ(d(xn, xn+1)),

which is a contradiction (from d(xn, xn+1) > 0 and the property of ϕ, we have
ϕ(d(xn, xn+1)) > 0). Thus, we conclude that

F (d(xn, xn+1)) ≤ F (d(xn−1, xn))− ϕ(d(xn−1, xn))

< F (d(xn−1, xn)).(2.3)
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It follows from (2.3) and (F1) that

d(xn, xn+1) < d(xn−1, xn) for all n ∈ N.
Therefore, {d(xn, xn+1)} is a nonnegative decreasing sequence of real numbers
which is bounded from below. Thus, there exists δ ≥ 0 such that

lim
n→∞

d(xn, xn+1) = δ.

Letting n→∞ in (2.3) and by applying (F3′) and property of ϕ, we obtain

F (δ) ≤ F (δ)− ϕ(δ).

This implies that ϕ(δ) = 0 and thus δ = 0. Consequently, we get

(2.4) lim
n→∞

d(xn, xn+1) = 0.

Now, we claim that {xn} is a Cauchy orthogonal sequence, that is,

lim
m,n→∞

d(xm, xn) = 0.

Suppose on the contrary, we assume that there exists ε > 0 for which we can
find subsequences {xn(k)} and {xm(k)} of {xn}, where n(k) is the smallest
integer with n(k) > m(k) ≥ k for all k ∈ N satisfying

(2.5) d(xm(k), xn(k)) ≥ ε and d(xm(k), xn(k)−1) < ε.

Using (2.5) and the triangle inequality in b-metric space, we have that

ε ≤ d(xn(k), xm(k)) ≤ bd(xn(k), xn(k)−1) + bd(xn(k)−1, xm(k))

<bd(xn(k), xn(k)−1) + bε.

Taking the upper limit as k →∞ and using (2.4), we have

(2.6) ε ≤ lim sup
k→∞

d(xm(k), xn(k)) ≤ bε.

From the triangle inequality, we have

ε ≤ d(xm(k), xn(k))

≤ bd(xm(k), xn(k)+1) + bd(xn(k)+1, xn(k))

≤ b2d(xm(k), xn(k)) + b2d(xn(k), xn(k)+1) + bd(xn(k)+1, xn(k))

= b2d(xm(k), xn(k)) + (b2 + b)d(xn(k), xn(k)+1).

Thus, from (2.4) and (2.6), we obtain

(2.7)
ε

b
≤ lim sup

k→∞
d(xm(k), xn(k)+1) ≤ b2ε.

Again, from the triangle inequality, we have

ε ≤ d(xn(k), xm(k))

≤ bd(xn(k), xm(k)+1) + bd(xm(k)+1, xm(k))

≤ b2d(xn(k), xm(k)) + b2d(xm(k), xm(k)+1) + bd(xm(k)+1, xm(k))

= b2d(xn(k), xm(k)) + (b2 + b)d(xm(k), xm(k)+1).
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Thus, from (2.4) and (2.6), we obtain

(2.8)
ε

b
≤ lim sup

k→∞
d(xn(k), xm(k)+1) ≤ b2ε.

From (2.8) and the inequality

d(xm(k)+1, xn(k)) ≤ bd(xm(k)+1, xn(k)+1) + bd(xn(k)+1, xn(k)),

we have

(2.9)
ε

b2
≤ lim sup

k→∞
d(xm(k)+1, xn(k)+1).

From (2.6) and the inequality

d(xm(k)+1, xn(k)+1) ≤ b[d(xm(k)+1, xn(k)) + d(xn(k), xn(k)+1)]

≤ b2[d(xm(k)+1, xm(k)) + d(xm(k), xn(k))]

+ bd(xn(k), xn(k)+1),

we get

(2.10) lim sup
k→∞

d(xm(k)+1, xn(k)+1) ≤ b3ε.

It follows from (2.9) and (2.10) that

(2.11)
ε

b2
≤ lim sup

k→∞
d(xm(k)+1, xn(k)+1) ≤ b3ε.

On the other hand, from (2.4) and (2.5), we can choose a positive integer n1 ∈ N
such that

1

2b
d(xn(k), xn(k)+1) <

1

2b
ε < d(xn(k), xm(k)), ∀n ≥ n1.

Since {xn} is an orthogonal sequence, hence for all ∀n ≥ n1 (xn(k), xm(k)) ∈
⊥42. Thus, by assumption that {Ti}mi=1 is a generalized orthogonal F -Suzuki
contraction family of multivalued mappings, we have

F (d(xn(k)+1, xm(k)+1)) ≤ F (MT (xn(k), xm(k);xn(k)+1, xm(k)+1))

− ϕ(MT (xn(k), xm(k);xn(k)+1, xm(k)+1)).(2.12)

Since

d(xn(k), xm(k)) ≤ MT (xn(k), xm(k);xn(k)+1, xm(k)+1)

= max

{
d(xn(k), xm(k)), d(xn(k), xn(k)+1), d(xm(k), xm(k)+1),

1
2bd(xn(k), xm(k)+1), d(xm(k), xn(k)+1),

(d(xn(k), xm(k)))
−1d(xn(k), xn(k)+1)d(xm(k), xm(k)+1)

}
,
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taking the limit supremum as k →∞ on each side of the above inequality and
using (2.6), (2.7), (2.8) and (2.11), we have

(2.13) ε ≤ lim sup
k→∞

MT (xn(k), xm(k);xn(k)+1, xm(k)+1) < b3ε.

Similarly, we can obtain

(2.14) ε ≤ lim inf
k→∞

MT (xn(k), xm(k);xn(k)+1, xm(k)+1) < b3ε.

Taking the limit supremum as k → ∞ in (2.12) and using (F3′), property of
ϕ, (2.11), (2.13) and (2.14), we get

F (b3ε) = F (b5
ε

b2
) ≤ F (b5 lim sup

k→∞
d(xn(k)+1, xm(k)+1))

≤ F (lim sup
k→∞

MT (xn(k), xm(k);xn(k)+1, xm(k)+1))

− ϕ(lim sup
k→∞

MT (xn(k), xm(k);xn(k)+1, xm(k)+1))

< F (b3ε)− ϕ(ε),

which is a contradiction with ε > 0, and it follows that {xn} is a Cauchy
orthogonal sequence in X. On the account of O-completeness of (X, d,⊥),
there exists x∗ ∈ X such that

lim
n→∞

d(xn, x
∗) = 0.

Now, if Ti is orthogonal upper semi-continuous for any of i ∈ {1, 2, . . . ,m}, then
x2n ∈ X, x2n+1 ∈ Ti(x2n) with limn→∞ d(x2n, x

∗)=0 and limn→∞ d(x2n+1, x
∗)

= 0 imply that x∗ ∈ Ti(x∗). Using (i), we obtain x∗ ∈ T1(x∗) = T2(x∗) = · · · =
Tm(x∗).

Finally, to prove (iii): Assume ∩mi=1Fix(Ti) is well orthogonal. Suppose that
there exist w and z such that w, z ∈ ∩mi=1Fix(Ti) but w 6= z. Since (w, z) ∈
⊥42 and 1

2bd(w,w) < d(w, z), by assumption that {Ti}mi=1 is a generalized
orthogonal F -Suzuki contraction family of multivalued mappings, we obtain
that

F (d(w, z))

≤ F (MT (w, z;w, z))− ϕ(MT (w, z;w, z))

= F
(
max

{
d(w, z), d(w,w), d(z, z), 1

2bd(w, z), d(z, w), (d(w, z))−1d(w,w)d(z, z)
})

− ϕ
(
max

{
d(w, z), d(w,w), d(z, z), 1

2bd(w, z), d(z, w), (d(w, z))−1d(w,w)d(z, z)
})

= F (d(w, z))− ϕ(d(w, z)),

and that implies F (d(w, z)) ≤ F (d(w, z))−ϕ(d(w, z)), which is a contradiction
as ϕ(d(w, z)) > 0. Hence, w = z, that is, ∩mi=1Fix(Ti) is a singleton set. The
converse is straightforward. �

Corollary 2.3. Let (X, d,⊥) be an O-complete b-metric space. Let T1, T2 :
X → CL(X). Suppose that for any x, y ∈ X with x 6= y, (x, y) ∈ ⊥41 and
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ux ∈ Ti(x), there exists uy ∈ Tj(y) for i 6= j with (ux, uy) ∈ ⊥42 and there
exists F ∈ FT such that the following condition holds

(2.15)

1

2b
d(x, ux) < d(x, y)

⇒ F (b5d(ux, uy)) ≤ F (MT (x, y;ux, uy))− ϕ(MT (x, y;ux, uy))

in which ϕ ∈ Φ, where i, j ∈ {1, 2} and

MT (x, y;ux, uy) = max{d(x, y), d(x, ux), d(y, uy), 1
2bd(x, uy),

d(y, ux), (d(x, y))−1d(x, ux)d(y, uy)}.
Then the following hold:

(i) Fix(Ti) 6= ∅ for any i ∈ {1, 2} if and only if Fix(T1) = Fix(T2) 6= ∅.
(ii) Fix(T1) = Fix(T2) 6= ∅ provided that either T1 or T2 is orthogonal

upper semi-continuous.
(iii) Fix(T1) ∩ Fix(T2) is well orthogonal if and only if Fix(T1) ∩ Fix(T2)

is a singleton set.

Example 2.4. Let X = { 1
2n }
∞
n=0 and d : X × X → [0,∞) be defined by

d(x, y) = (x− y)2 for all x, y ∈ X. Define the binary relation ⊥ on X by x ⊥ y
if and only if y

x ∈ N. Then (X, d,⊥) is an O-complete b-metric space with
b = 2. Define the mappings T1, T2 : X → CL(X) by

T1(x) =

{
{ 1
4n }, if x = 1

2n , n ∈ N,
{1, 12}, if x = 1.

T2(x) =

{
{ 1
8n }, if x = 1

2n , n ∈ N,
{1}, if x = 1.

Now we can easily show that T is ⊥-preserving, for 1
2n ,

1
2m ∈ X with

(
1
2n ,

1
2m

)
∈

⊥41 for n ≥ m and n,m ∈ N0, then for 1
4n ∈ T1( 1

2n ), there exists 1
8m ∈ T2( 1

2m )

with ( 1
4n ,

1
8m ) ∈ ⊥42 and also for 1

2 ∈ T1(1), there exists 1
8m ∈ T2( 1

2m ) with

( 1
2 ,

1
8m ) ∈ ⊥42 such that condition (2.15) holds for all F ∈ FT and ϕ ∈ Φ.

Thus, all the assumptions of Corollary 2.3 are satisfied. Hence, all the results
of Corollary 2.3 hold. Moreover, Fix(T1) = Fix(T2) = {1}.

The following theorems can be obtained easily by repeating the steps in the
proof of Theorem 2.2.

Theorem 2.5. Let (X, d,⊥) be an O-complete b-metric space with constant
b ≥ 1 and an orthogonal element x0. Let Ti : X → CL(X) be ⊥-preserving
for each i ∈ {1, 2, . . . ,m} and Tm+1 = T1. Suppose that for every x, y ∈ X
with x 6= y, (x, y) ∈ ⊥41 and ux ∈ Ti(x), there exists uy ∈ Ti+1(y) for
i ∈ {1, 2, . . . ,m} with (ux, uy) ∈ ⊥42 and there exists F ∈ FT such that the
following condition holds

1

2b
d(x, ux) < d(x, y)⇒ τ + F (b5d(ux, uy)) ≤ F (MT (x, y;ux, uy)),
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where τ > 0. Then, the conclusions obtained in Theorem 2.2 remain true.

Proof. Taking ϕ(t) = τ for all t > 0 in (2.1), so the proof immediately follows
from Theorem 2.2. �

Theorem 2.6. Let (X, d,⊥) be an O-complete b-metric space with constant
b ≥ 1 and an orthogonal element x0. Let Ti : X → CL(X) be ⊥-preserving
for each i ∈ {1, 2, . . . ,m} and Tm+1 = T1. Suppose that for every x, y ∈ X
with x 6= y, (x, y) ∈ ⊥41 and ux ∈ Ti(x), there exists uy ∈ Ti+1(y) for
i ∈ {1, 2, . . . ,m} with (ux, uy) ∈ ⊥42 and there exists F ∈ FT such that the
following condition holds

(2.16)

1

2b
d(x, ux) < d(x, y)

⇒ F (b5d(ux, uy)) ≤ F (W (x, y;ux, uy))− ϕ(W (x, y;ux, uy)),

where ϕ ∈ Φ and

W (x, y;ux, uy) = max
{
d(x, y), d(x, ux), d(y, uy),

d(x,uy)+d(y,ux)
2b

}
.

Then, the conclusions obtained in Theorem 2.2 remain true.

Proof. Since W (x, y;ux, uy) ≤ MT (x, y;ux, uy) and from (F1), so the proof
immediately follows from Theorem 2.2. �

Theorem 2.7. Let (X, d,⊥) be an O-complete b-metric space with constant
b ≥ 1 and an orthogonal element x0. Let Ti : X → CL(X) be ⊥-preserving
for each i ∈ {1, 2, . . . ,m} and Tm+1 = T1. Suppose that for every x, y ∈ X
with x 6= y, (x, y) ∈ ⊥41 and ux ∈ Ti(x), there exists uy ∈ Ti+1(y) for
i ∈ {1, 2, . . . ,m} with (ux, uy) ∈ ⊥42 and there exists F ∈ FT such that the
following condition holds

(2.17)

1

2b
d(x, ux) < d(x, y)

⇒ F (b5d(ux, uy)) ≤ F (V (x, y;ux, uy))− ϕ(V (x, y;ux, uy)),

where ϕ ∈ Φ and

V (x, y;ux, uy) = αd(x, y) + βd(x, ux) + γd(y, uy) + δ1d(x, uy) + δ2d(y, ux)

for α, β, γ, δ1, δ2 ≥ 0, δ1 ≤ δ2 with α+ β + γ + δ1 + δ2 ≤ 1.
Then, the conclusions obtained in Theorem 2.2 remain true.

Proof. Since V (x, y;ux, uy) ≤ MT (x, y;ux, uy) and from (F1), so the proof
immediately follows from Theorem 2.2. �

Corollary 2.8. Let (X, d,⊥) be an O-complete b-metric space with constant
b ≥ 1 and an orthogonal element x0. Let Ti : X → CL(X) be ⊥-preserving
for each i ∈ {1, 2, . . . ,m} and Tm+1 = T1. Suppose that for every x, y ∈ X
with x 6= y, (x, y) ∈ ⊥41 and ux ∈ Ti(x), there exists uy ∈ Ti+1(y) for
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i ∈ {1, 2, . . . ,m} with (ux, uy) ∈ ⊥42 and there exists F ∈ FT such that the
following condition holds

τ(W (x, y;ux, uy)) + F (d(ux, uy)) ≤ F (W (x, y;ux, uy)),

where τ : R+ → R+ is a mapping with lim infs→t+ τ(s) ≥ 0 for all t ≥ 0 and

W (x, y;ux, uy) = max
{
d(x, y), d(x, ux), d(y, uy),

d(x,uy)+d(y,ux)
2b

}
.

Then, the conclusions obtained in Theorem 2.2 remain true.

Proof. Taking ϕ(t) = τ(t) for all t > 0 in (2.16), so the proof immediately
follows from Theorem 2.6. �

Corollary 2.9. Let (X, d,⊥) be an O-complete b-metric space with constant
b ≥ 1 and an orthogonal element x0. Let Ti : X → CL(X) be ⊥-preserving
for each i ∈ {1, 2, . . . ,m} and Tm+1 = T1. Suppose that for every x, y ∈ X
with x 6= y, (x, y) ∈ ⊥41 and ux ∈ Ti(x), there exists uy ∈ Ti+1(y) for
i ∈ {1, 2, . . . ,m} with (ux, uy) ∈ ⊥42 and there exists F ∈ FT such that the
following condition holds

τ(V (x, y;ux, uy)) + F (d(ux, uy)) ≤ F (V (x, y;ux, uy)),

where τ : R+ → R+ is a mapping with lim infs→t+ τ(s) ≥ 0 for all t ≥ 0 and

V (x, y;ux, uy) = αd(x, y) + βd(x, ux) + γd(y, uy) + δ1d(x, uy) + δ2d(y, ux)

for α, β, γ, δ1, δ2 ≥ 0, δ1 ≤ δ2 with α+ β + γ + δ1 + δ2 ≤ 1.
Then, the conclusions obtained in Theorem 2.2 remain true.

Proof. Taking ϕ(t) = τ(t) for all t > 0 in (2.17), so the proof immediately
follows from Theorem 2.7. �

Since a b-metric space is a metric space when b = 1, so we obtain the
following theorems.

Theorem 2.10. Let (X, d,⊥) be an O-complete metric space and an orthog-
onal element x0. Let Ti : X → CL(X) be a generalized orthogonal F -Suzuki
contraction family and ⊥-preserving. Then the following hold:

(i) Fix(Ti) 6= ∅ for any i ∈ {1, 2, . . . ,m} if and only if Fix(T1) = Fix(T2)
= · · · = Fix(Tm) 6= ∅.

(ii) Fix(T1) = Fix(T2) = · · · = Fix(Tm) 6= ∅ provided that any one of Ti
is orthogonal upper semi-continuous for i ∈ {1, 2, . . . ,m}.

(iii) ∩mi=1Fix(Ti) is well orthogonal if and only if ∩mi=1Fix(Ti) is a singleton
set.

Proof. Since any metric space is a b-metric space with constant b = 1, so from
Theorem 2.2 the proof is complete. �
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Corollary 2.11. Let (X, d,⊥) be an O-complete metric space and an orthogo-
nal element x0. Let Ti : X → CL(X) be ⊥-preserving for each i ∈ {1, 2, . . . ,m}
and Tm+1 = T1. Suppose that for every x, y ∈ X with x 6= y, (x, y) ∈ ⊥41 and
ux ∈ Ti(x), there exists uy ∈ Ti+1(y) for i ∈ {1, 2, . . . ,m} with (ux, uy) ∈ ⊥42

and there exists F ∈ FT such that the following condition holds

1

2
d(x, ux) < d(x, y)

⇒ F (d(ux, uy)) ≤ F (W (x, y;ux, uy))− ϕ(W (x, y;ux, uy)),

where ϕ ∈ Φ and

W (x, y;ux, uy) = max
{
d(x, y), d(x, ux), d(y, uy),

d(x,uy)+d(y,ux)
2

}
.

Then, the conclusions obtained in Theorem 2.2 remain true.

Proof. Since any metric space is a b-metric space with constant b = 1, so from
Theorem 2.6 the proof is complete. �

Corollary 2.12. Let (X, d,⊥) be an O-complete metric space and an orthogo-
nal element x0. Let Ti : X → CL(X) be ⊥-preserving for each i ∈ {1, 2, . . . ,m}
and Tm+1 = T1. Suppose that for every x, y ∈ X with x 6= y, (x, y) ∈ ⊥41 and
ux ∈ Ti(x), there exists uy ∈ Ti+1(y) for i ∈ {1, 2, . . . ,m} with (ux, uy) ∈ ⊥42

and there exists F ∈ FT such that the following condition holds

1

2
d(x, ux) < d(x, y)

⇒ F (d(ux, uy)) ≤ F (V (x, y;ux, uy))− ϕ(V (x, y;ux, uy)),

where ϕ ∈ Φ and

V (x, y;ux, uy) = αd(x, y) + βd(x, ux) + γd(y, uy) + δ1d(x, uy) + δ2d(y, ux)

for α, β, γ, δ1, δ2 ≥ 0, δ1 ≤ δ2 with α+ β + γ + δ1 + δ2 ≤ 1.
Then, the conclusions obtained in Theorem 2.2 remain true.

Proof. Since any metric space is a b-metric space with constant b = 1, so from
Theorem 2.7 the proof is complete. �

Corollary 2.13. Let (X, d,⊥) be an O-complete metric space and an orthogo-
nal element x0. Let Ti : X → CL(X) be ⊥-preserving for each i ∈ {1, 2, . . . ,m}
and Tm+1 = T1. Suppose that for every x, y ∈ X with x 6= y, (x, y) ∈ ⊥41 and
ux ∈ Ti(x), there exists uy ∈ Ti+1(y) for i ∈ {1, 2, . . . ,m} with (ux, uy) ∈ ⊥42

and there exists F ∈ FT such that the following condition holds

τ(W (x, y;ux, uy)) + F (d(ux, uy)) ≤ F (W (x, y;ux, uy)),

where τ : R+ → R+ is a mapping with lim infs→t+ τ(s) ≥ 0 for all t ≥ 0 and

W (x, y;ux, uy) = max
{
d(x, y), d(x, ux), d(y, uy),

d(x,uy)+d(y,ux)
2

}
.

Then, the conclusions obtained in Theorem 2.2 remain true.
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Proof. Since any metric space is a b-metric space with constant b = 1, so from
Corollary 2.8 the proof is complete. �

Corollary 2.14. Let (X, d,⊥) be an O-complete metric space and an orthogo-
nal element x0. Let Ti : X → CL(X) be ⊥-preserving for each i ∈ {1, 2, . . . ,m}
and Tm+1 = T1. Suppose that for every x, y ∈ X with x 6= y, (x, y) ∈ ⊥41 and
ux ∈ Ti(x), there exists uy ∈ Ti+1(y) for i ∈ {1, 2, . . . ,m} with (ux, uy) ∈ ⊥42

and there exists F ∈ FT such that the following condition holds

τ(V (x, y;ux, uy)) + F (d(ux, uy)) ≤ F (V (x, y;ux, uy)),

where τ : R+ → R+ is a mapping with lim infs→t+ τ(s) ≥ 0 for all t ≥ 0 and

V (x, y;ux, uy) = αd(x, y) + βd(x, ux) + γd(y, uy) + δ1d(x, uy) + δ2d(y, ux)

for α, β, γ, δ1, δ2 ≥ 0, δ1 ≤ δ2 with α+ β + γ + δ1 + δ2 ≤ 1.
Then, the conclusions obtained in Theorem 2.2 remain true.

Proof. Since any metric space is a b-metric space with constant b = 1, so from
Corollary 2.9 the proof is complete. �

Remark 2.15.

1) Theorem 2.2, Theorem 2.5, Theorem 2.6, Theorem 2.7 and Theorem
2.10 are new results in the existing literature.

2) Corollary 2.13 extends and generalizes the main results: Theorem 1 of
Abbas et al. [2], Theorem 4.1 of Latif et al. [16], Theorem 3.4 of Rus
et al. [27], Theorem 2.1 of Piri et al. [25], and Theorem 3.1 of Sgroi et
al. [29].

3) Corollary 2.9 extends and generalizes main result of Theorem 14 of the
Beg et al. [9], Theorem 3.3 of Sawangsup et al. [28].

4) Corollary 2.14 extends and generalizes the main results: Theorem 2 of
Abbas et al. [2], Theorem 3.4 and Theorem 4.1 of Cosentino et al. [11],
Theorem 3.4 of Rus et al. [27] and Theorem 3.4 of Sgroi et al. [29].

5) If we take T1 = T2 = · · · = Tm in generalized orthogonal F -Suzuki con-
traction family of multivalued mappings, then we obtain the fixed point
results for generalized orthogonal F -Suzuki contraction of multivalued
mappings which is also new in the literature.

All results in this paper may be stated with respect to single valued mappings
in the setting of O-complete b-metric space. These results extend, unify and
generalize the related results in the literature. For instance, we consider the
following single valued results.

Corollary 2.16. Let (X, d,⊥) be O-complete b-metric space. Let fi : X → X
for i ∈ {1, 2}. Suppose that for any x, y ∈ X with x 6= y, (x, y) ∈ ⊥41 implies
(fi(x), fj(y)) ∈ ⊥42 for i 6= j and there exists F ∈ FT such that the following
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condition holds
1

2b
d(x, fi(x)) < d(x, y)

⇒ F (b5d(fi(x), fj(y))) ≤ F (M(x, y; fi(x), fj(y)))

− ϕ(M(x, y; fi(x), fj(y)))

in which ϕ ∈ Φ, where i, j ∈ {1, 2} and

M(x, y; fi(x), fj(y)) = max{d(x, y), d(x, fi(x)), d(y, fj(y)), 1
2bd(x, fj(y)),

d(y, fi(x)), (d(x, y))−1d(x, fi(x))d(y, fj(y))}.
Then the following hold:

(i) Fix(fi) 6= ∅ for any i ∈ {1, 2} if and only if Fix(f1) = Fix(f2) 6= ∅.
(ii) Fix(f1) = Fix(f2) 6= ∅ provided that either f1 or f2 is orthogonal upper

semi-continuous.
(iii) Fix(f1) ∩ Fix(f2) is well orthogonal if and only if Fix(f1) ∩ Fix(f2)

is a singleton set.

Proof. Define Ti : X → CL(X) as Ti(x) = {fi(x)} for all i ∈ {1, 2}. Note that
Ti satisfy all conditions of Corollary 2.3. So the proof immediately follows from
Corollary 2.3. �

Corollary 2.17. Let (X, d,⊥) be an O-complete metric space and an orthog-
onal element x0. Let f : X → X be ⊥-continuous. Suppose that for every
x, y ∈ X with x 6= y, (x, y) ∈ ⊥41, then (fx, fy) ∈ ⊥42, there exists F ∈ FT

and τ > 0 such that the following condition holds

1

2
d(x, fx) < d(x, y)⇒ τ + F (d(fx, fy)) ≤ F (Wf (x, y)),

where

Wf (x, y) = max
{
d(x, y), d(x, fx), d(y, fy), d(x,fy)+d(y,fx)

2

}
.

Then f has a fixed point.

Proof. For i ∈ {1, 2, . . . ,m} define Ti : X → CL(X) as T1(x) = T2(x) = · · · =
Tm(x) = {f(x)}. Note that Ti satisfy all conditions of Corollary 2.13. So the
proof immediately follows from Corollary 2.13. �

3. Conclusion

A new notion of generalized orthogonal F -Suzuki contraction for a family
of multivalued mappings in orthogonal b-metric space was introduced. This
new notion generalizes some well-known results in the literature, especially [2].
We proved the existence of some common fixed point results for generalized
orthogonal F -Suzuki contraction for a family of multivalued mappings in or-
thogonal b-metric space. We provided an example to illustrate and support
these results. Our results are improvement and generalization of some related
results in the existing literature (see [3], [16], [27] and [29]).
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[2] M. Abbas, T. Nazir, and V. Rakočević, Common fixed points of family of multivalued
F -contraction mappings on ordered metric spaces, Vietnam J. Math. 48 (2020), no. 1,

11–21. https://doi.org/10.1007/s10013-019-00341-x

[3] M. Abbas and B. E. Rhoades, Fixed point theorems for two new classes of multivalued
mappings, Appl. Math. Lett. 22 (2009), no. 9, 1364–1368. https://doi.org/10.1016/

j.aml.2009.04.002

[4] A. Aghajani, M. Abbas, and J. R. Roshan, Common fixed point of generalized weak
contractive mappings in partially ordered b-metric spaces, Math. Slovaca 64 (2014),

no. 4, 941–960. https://doi.org/10.2478/s12175-014-0250-6

[5] T. O. Alakoya and O. T. Mewomo, Viscosity S-iteration method with inertial technique
and self-adaptive step size for split variational inclusion, equilibrium and fixed point

problems, Comput. Appl. Math. 41 (2022), no. 1, Paper No. 39, 31 pp. https://doi.

org/10.1007/s40314-021-01749-3

[6] H. H. Alsulami, E. Karapınar, and H. Piri, Fixed points of generalized F -Suzuki type

contraction in complete b-metric spaces, Discrete Dyn. Nat. Soc. 2015 (2015), Art. ID

969726, 8 pp. https://doi.org/10.1155/2015/969726
[7] I. A. Bakhtin, The contraction mapping principle in almost metric space, in Functional

analysis, No. 30 (Russian), 26–37, Ul’yanovsk. Gos. Ped. Inst., Ul’yanovsk, 1989.
[8] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux
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