DOI QR코드

DOI QR Code

KNOTOIDS, PSEUDO KNOTOIDS, BRAIDOIDS AND PSEUDO BRAIDOIDS ON THE TORUS

  • Diamantis, Ioannis (Department of Data Analytics and Digitalisation Maastricht University School of Business and Economics)
  • Received : 2021.05.10
  • Accepted : 2022.02.07
  • Published : 2022.10.01

Abstract

In this paper we study the theory of knotoids and braidoids and the theory of pseudo knotoids and pseudo braidoids on the torus T. In particular, we introduce the notion of mixed knotoids in S2, that generalizes the notion of mixed links in S3, and we present an isotopy theorem for mixed knotoids. We then generalize the Kauffman bracket polynomial, <; >, for mixed knotoids and we present a state sum formula for <; >. We also introduce the notion of mixed pseudo knotoids, that is, multi-knotoids on two components with some missing crossing information. More precisely, we present an isotopy theorem for mixed pseudo knotoids and we extend the Kauffman bracket polynomial for pseudo mixed knotoids. Finally, we introduce the theories of mixed braidoids and mixed pseudo braidoids as counterpart theories of mixed knotoids and mixed pseudo knotoids, respectively. With the use of the L-moves, that we also introduce here for mixed braidoid equivalence, we formulate and prove the analogue of the Alexander and the Markov theorems for mixed knotoids. We also formulate and prove the analogue of the Alexander theorem for mixed pseudo knotoids.

Keywords

References

  1. I. Diamantis, The Kauffman bracket skein module of the complement of (2, 2p+ 1)-torus knots via braids, arXiv:2106.04965v1 [math.GT].
  2. I. Diamantis, An alternative basis for the Kauffman bracket skein module of the solid torus via braids, in Knots, low-dimensional topology and applications, 329-345, Springer Proc. Math. Stat., 284, Springer, Cham, 2019. https://doi.org/10.1007/978-3-030-16031-9_16
  3. I. Diamantis, The Kauffman bracket skein module of the handlebody of genus 2 via braids, J. Knot Theory Ramifications 28 (2019), no. 13, 1940020, 19 pp. https://doi.org/10.1142/S0218216519400200
  4. I. Diamantis, Tied links in various topological settings, J. Knot Theory Ramifications 30 (2021), no. 7, Paper No. 2150046, 26 pp. https://doi.org/10.1142/S0218216521500462
  5. I. Diamantis, Tied pseudo links & pseudo knotoids, Mediterr. J. Math. 2021 (2021), 18:201 https://doi.org/10.1007/s00009-021-01842-1
  6. I. Diamantis, Pseudo links in handlebodies, Bull. Hellenic Math. Soc. 65 (2021), 17-34.
  7. I. Diamantis, HOMFLYPT skein sub-modules of the lens spaces L(p, 1), Topology Appl. 301 (2021), Paper No. 107500, 25 pp. https://doi.org/10.1016/j.topol.2020.107500
  8. I. Diamantis, Pseudo links and singular links in the Solid Torus, to appear, Communications in Mathematics; arXiv:2101.03538v1 [math.GT].
  9. I. Diamantis and S. Lambropoulou, Braid equivalences in 3-manifolds with rational surgery description, Topology Appl. 194 (2015), 269-295. https://doi.org/10.1016/j.topol.2015.08.009
  10. I. Diamantis and S. Lambropoulou, A new basis for the Homflypt skein module of the solid torus, J. Pure Appl. Algebra 220 (2016), no. 2, 577-605. https://doi.org/10.1016/j.jpaa.2015.06.014
  11. I. Diamantis and S. Lambropoulou, The braid approach to the HOMFLYPT skein module of the lens spaces L(p, 1), in Algebraic modeling of topological and computational structures and applications, 143-176, Springer Proc. Math. Stat., 219, Springer, Cham, 2017. https://doi.org/10.1007/978-3-319-68103-0_7
  12. I. Diamantis and S. Lambropoulou, An important step for the computation of the HOMFLYPT skein module of the lens spaces L(p, 1) via braids, J. Knot Theory Ramifications 28 (2019), no. 11, 1940007, 25 pp. https://doi.org/10.1142/S0218216519400078
  13. I. Diamantis, S. Lambropoulou, and J. H. Przytycki, Topological steps toward the Homflypt skein module of the lens spaces L(p, 1) via braids, J. Knot Theory Ramifications 25 (2016), no. 14, 1650084, 26 pp. https://doi.org/10.1142/S021821651650084X
  14. J. Dorier, D. Goundaroulis, F. Benedetti, and A. Stasiak, Knotoid: a tool to study the entanglement of open protein chains using the concept of knotoids, Bioinformatics 34 (2018), no. 19, 3402-3404. https://doi.org/10.1093/bioinformatics/bty365
  15. H. A. Dye, Pseudo knots and an obstruction to cosmetic crossings, J. Knot Theory Ramifications 26 (2017), no. 4, 1750022, 7 pp. https://doi.org/10.1142/S0218216517500225
  16. D. Goundaroulis, N. Gugumcu, S. Lambropoulou, J. Dorier, A. Stasiak, and L. Kauffman, Topological models for open-knotted protein chains using the concepts of knotoids and bonded knotoids, Polymers 9 (2017), no. 9, 444. https://doi.org/10.3390/polym9090444
  17. N. Gugumcu and S. Lambropoulou, Knotoids, braidoids and applications, Symmetry 9 (2017), no. 12, 315. https://doi.org/10.3390/sym9120315
  18. N. Gugumcu and S. Lambropoulou, Braidoids, Israel J. Math., to appear: arXiv:1908.06053v2.
  19. R. Hanaki, Pseudo diagrams of knots, links and spatial graphs, Osaka J. Math. 47 (2010), no. 3, 863-883. http://projecteuclid.org/euclid.ojm/1285334478
  20. R. Haring-Oldenburg and S. Lambropoulou, Knot theory in handlebodies, J. Knot Theory Ramifications 6 (2002), no. 6, 921-943.
  21. A. Henrich, R. Hoberg, S. Jablan, L. Johnson, E. Minten, and L. Radovi'c, The theory of pseudoknots, J. Knot Theory Ramifications 22 (2013), no. 7, 1350032, 21 pp. https://doi.org/10.1142/S0218216513500326
  22. L. H. Kauffman, New invariants in the theory of knots, Amer. Math. Monthly 95 (1988), no. 3, 195-242. https://doi.org/10.2307/2323625
  23. L. H. Kauffman and S. Lambropoulou, Virtual braids and the L-move, J. Knot Theory Ramifications 15 (2006), no. 6, 773-811.
  24. S. Lambropoulou, Solid torus links and Hecke algebras of B-type, Quantum Topology; D. N. Yetter Ed.; World Scientific Press, 225-245, 1994.
  25. S. Lambropoulou, L-moves and Markov theorems, J. Knot Theory Ramifications 16 (2007), no. 10, 1459-1468. https://doi.org/10.1142/S0218216507005919
  26. S. Lambropoulou and C. P. Rourke, Markov's theorem in 3-manifolds, Topology Appl. 78 (1997), no. 1-2, 95-122. https://doi.org/10.1016/S0166-8641(96)00151-4
  27. J. H. Przytycki, Skein modules of 3-manifolds, Bull. Polish Acad. Sci. Math. 39 (1991), no. 1-2, 91-100.
  28. V. Turaev, The Conway and Kauffman modules of the solid torus, J. Soviet Math. 52 (1990), no. 1, 2799-2805; translated from Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 167 (1988), Issled. Topol. 6, 79-89, 190. https://doi.org/10.1007/BF01099241
  29. V. Turaev, Knotoids, Osaka J. Math. 49 (2012), no. 1, 195-223. http://projecteuclid.org/euclid.ojm/1332337244