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CIRCLE APPROXIMATION USING PARAMETRIC

POLYNOMIAL CURVES OF HIGH DEGREE

IN EXPLICIT FORM

Young Joon Ahn

Abstract. In this paper we present a full circle approximation method
using parametric polynomial curves with algebraic coefficients which are

curvature continuous at both endpoints. Our method yields the n-th

degree parametric polynomial curves which have a total number of 2n
contacts with the full circle at both endpoints and the midpoint. The

parametric polynomial approximants have algebraic coefficients involving
rational numbers and radicals for degree higher than four. We obtain

the exact Hausdorff distances between the circle and the approximation

curves.

1. Introduction

Circle approximation using polynomial curve is a challenging task in CAGD
(Computer Aided Geometric Design) or Geometric Modeling. Many works for
circle approximation with different foci, e.g., best approximation, geometric
continuity, explicit form, full circle approximation, have been developed in
recent forty years.

de Boor et al. [3] presented the approximation method of planar curves using
curvature continuous cubic Bézier curves. The approximation methods of cir-
cular arcs using quadratic and cubic Bézier curves having approximation order
four and six, respectively, were proposed [4,7,16]. A lot of papers concerned the
quartic circle approximation in explicit form have been published [2,8,12,13,15].
The approximation methods of circular arc using quintic Bézier curve having
approximation order ten were developed [2, 5, 19]. Floater [6] found the poly-
nomial curves of odd degree n which have 2n contacts with the conic and are
Gn−1 continuous. Jaklič et al. [9–11] presented the full circle approximation
using polynomial curves of degree n having very high precision and 2n contacts
with the full circle. The best circle approximation scheme using Gk polynomial
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curves having the constrained Chebyshev polynomial error functions was pro-
posed [18]. The optimal G2 circle approximation of degree less than or equal
to four can be obtained in explicit form [1]. However, there is no full circle
approximation using parametric polynomial curves of degree lager than four in
explicit form with G2 continuity at both endpoints.

This study aims to obtain the full circle approximation using parametric
polynomial curves of high degree with algebraic coefficients and at least G2

continuity at both endpoints. It can be useful in Geometric Modeling. We
are inspired largely by Floater’s method [6] which yields a conic approximation
curve having 2n contacts with conic at both endpoints and the shoulder point.
We present the approximation method using the parametric polynomial curve
of degree n which has 2n contacts with the full circle at both endpoints and the
midpoint. This method is suitable to find the parametric polynomial approxi-
mation curve with algebraic coefficients. Using our approximation method we
obtain the circle approximation by parametric polynomial curves of high degree
with G2 continuity at both endpoints and with algebraic coefficients involving
radicals and rational numbers.

The rest of our paper is constructed as follows. In Section 2, preliminaries for
circle approximation are given, and in Section 3, our approximation method is
presented. In Section 4, the curvature continuous circle approximation curves
of high degree with algebraic coefficients are obtained, and in Section 5, we
summarize our works.

2. Preliminaries

Let c be a full circle parameterized by c(θ) = (cos θ, sin θ)T , θ ∈ [−π, π], and
let b(t) =

∑n
i=0B

n
i (t)bi be the Bézier curve of degree n, where b0, . . . ,bn are

control points and Bn
i =

(
n
i

)
ti(1− t)n−i is the Bernstein polynomial of degree

n. The Hausdorff distance between two curves b and c is

dH(b, c) = max
t∈[0,1]

|φ(t)| ,

where φ(t) = ||b(t)|| − 1. We use another error function

ψ(t) = ||b(t)||2 − 1

for convenience, which is a polynomial of degree 2n.

Lemma 2.1. The error function ψ has zeros of multiplicity k at t = 0, 1 with
c′(−π) · b′(0) > 0 and c′(π) · b′(1) > 0 if and only if the Bézier curve b is a
Gk−1 endpoint interpolation of the full circle c.

The proof of this lemma can be found in [2].

3. Circle approximation using Bézier curves

Let m be the greatest integer less than or equal to n/2. Since c is symmetric
with respect to x-axis, we assume the same symmetry for the approximation
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curve, i.e.,

(1) bn−i = Rxbi, i = 0, . . . ,m,

where Rx is the reflection with respect to x-axis. Let bi = (xi, yi)
T for i =

0, 1, . . . , n. By the symmetry, yn
2

= 0 for even n. ψ has double zeros at t = 0, 1
if and only if

(2) b0 = bn =

(
−1

0

)
and x1 = xn−1 = −1.

Moreover, if y1 < 0, then b is a G1 endpoint interpolation of c. By the symme-
try, if b is G1 endpoint interpolation of c, then b has the same curvature at both
endpoints so that b becomes to be curvature continuous at both endpoints.

Proposition 3.1. The circle approximation b has two contacts with c at t =
1/2 if

(3) xm =


(1+n+2n−1)

(n
m)

−
∑m−1

i=2
(n
i)

(n
m)
xi for odd n,

2

(
(1+n+2n−1)

(n
m)

−
∑m−1

i=2
(n
i)

(n
m)
xi

)
for even n.

Proof. If xm satisfies Eq. (3), then b(1/2) = (1, 0)T and so ψ(1/2) = 0. Since
ψ is symmetric with respect to t = 1/2, ψ has double zeros at t = 1/2. Hence
b has two contacts at t = 1/2 with c. �

If b satisfies Eqs. (1)-(3), then ψ has double zeros at t = 0, 1/2, 1. Let
ψ1(t) = ψ(t)/(t2(1 − t)2(t − 1/2)2). ψ1 is a polynomial of degree 2n − 6. b
has n− 3 unknowns x2, . . . , xm−1 and y1, . . . , ym for odd n, and x2, . . . , xm−1
and y1, . . . , ym−1 for even n. Now we consider the approximation b satisfying
Eqs. (1)-(3).

Proposition 3.2. The circle approximation b has contact orders k, 2(n−k), k
with c at t = 0, 1/2, 1, respectively, if

(4)
ψ
(i)
1 (0) = 0, i = 0, . . . , k − 3,

ψ
(2j)
1 (1/2) = 0, j = 0, . . . , n− k − 2,

for k = 2, 3, . . . , n− 1.

Proof. If b satisfies the first equation in Eq. (4), then ψ1 has zeros of order
k−2 at t = 0, 1 and so ψ has zeros of order k at t = 0, 1. Thus b has k contacts
with c at t = 0, 1. If b satisfies the second equation in Eq. (4), by symmetry
of ψ1 with respect to t = 1/2, ψ1 has zeros of order 2(n − k) − 2 at t = 1/2.
Hence b has 2n − 2k contacts with c at t = 1/2. Therefore b has totally 2n
contacts with c in the interval [0, 1]. �
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4. Full circle approximation using parametric polynomial curves in
explicit form

In this section we obtain full circle approximations by parametric polyno-
mial curves with algebraic coefficients solving the equations in Proposition 3.2.
They are at least G2 continuous at both endpoints. The following proposi-
tions represent the full circle approximation using parametric polynomial curves
with algebraic coefficients involving rational numbers and radicals for degree
n = 5, 6, 7, 9.

Proposition 4.1. The quintic Bézier curve b with the control points satisfying

(5) b1 =

(
−1

− 6
√
2

5

)
, b2 =

( 11
5

− 7
√
2

5

)
and Eqs. (1)-(3) is curvature continuous at both endpoint, and

(6) dH(c, ρb) = 1− ρ ≈ 4.28× 10−3,

where ρ = 250/(125 + 17
√

55).

Proof. The quintic Bézier curve b with the control points in Eq. (5) has the
error function ψ factorized as

ψ(t) = 8t2(2t− 1)6(t− 1)2.

Since ψ has double zeros at t = 0, 1, b is a G1 endpoint interpolation of the
full circle c. Moreover, b is symmetric with respect to the x-axis, b has the
same curvature at both endpoints, and so is curvature continuous at the both

endpoints. Since ψ has the maximum at t0 = 1
2 ±

√
15
10 , we have

0 ≤ ψ(t) ≤ ψ(t0) =
54

55

and 1 ≤ ||b(t)|| ≤ ||b(t0)|| = 17
√

55/53. We choose a scaling factor ρ =
2/(1 + ||b(t0)||), so that

ρ− 1 ≤ ||ρb(t)|| − 1 ≤ 1− ρ.
Thus

dH(c, ρb) = max
0≤t≤1

|||ρb(t)|| − 1| = ||ρb(t0)|| − 1 = 1− ρ

and so the assertion follows. �

Proposition 4.2. The hexic Bézier curve b with the control points satisfying

(7) b1 =

( −1

− 2
√

2+
√
2

3

)
, b2 =

( 8
√
2+1
15

(16
√
2−40)

√
2+
√
2

15

)
, b3 =

( 19−4
√
2

5

0

)
,

and Eqs. (1)-(3) is a G3 endpoint interpolation of the full circle, and

(8) dH(c, ρb) = 1− ρ ≈ 4.70× 10−4,

where ρ = 54/(27 +
√

753− 16
√

2).
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Proof. The hexic Bézier curve b with the control points in Eq. (7) has the error
function ψ factorized as

ψ(t) = 128(3− 2
√

2)t4(2t− 1)4(t− 1)4.

Thus ψ has four zeros at t = 0, 1 and so b is a G3 endpoint interpolation of

the full circle. ψ has the maximum at t = 1
2 ±

√
3
6 , and

max
0≤t≤1

ψ(t) =
8(3− 2

√
2)

36
,

max
0≤t≤1

||b(t)|| =
√

753− 16
√

2

27
.

Hence Eq. (8) follows. �

Proposition 4.3. The septic Bézier curve b with the control points satisfying

(9) b1 =

( −1
4(1−

√
5)

7

)
, b2 =

( 27−16
√
5

21

4−20
√
5

21

)
, b3 =

( 45+16
√
5

35

− 96−16
√
5

35

)
,

and Eqs. (1)-(3) is a G3 endpoint interpolation of the full circle, and

(10) dH(c, ρb) = 1− ρ ≈ 3.06× 10−4

for ρ = 2 · 74/(74 +
√

27 · 33 · 7(7− 3
√

5) + 78).

Proof. The sepic Bézier curve b with the control points in Eq. (9) has the error
function ψ factorized as

ψ(t) = 128(7− 3
√

5)t4(2t− 1)6(t− 1)4.

Thus ψ has four zeros at t = 0, 1 and so b is a G3 endpoint interpolation of

the full circle. ψ has the maximum at t = 1
2 ±

√
21
14 , and

max
0≤t≤1

ψ(t) =
27 · 33(7− 3

√
5)

77
,

max
0≤t≤1

||b(t)|| =

√
27 · 33 · 7(7− 3

√
5) + 78

74
.

Hence Eq. (10) follows. �

The approximation method by Proposition 3.2 cannot yield the octic circle
approximation with algebraic coefficients involving radicals and rational num-
bers. The septic Bézier approximant in Proposition 4.3 can be used by degree
elevation [14, 17] when the octic Bézier curve approximating the full circle is
needed.



1264 Y. J. AHN

Figure 1. Left: Quintic, hexic, septic, and nonic (from top
to bottom) circle approximations (magenta color) with control
polygons (blue). Right: Curvatures (magenta) of the quintic,
hexic, Septic, and nonic (from top to bottom) approximation
curves.
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Proposition 4.4. The nonic Bézier curve b with the control points satisfying

(11)

b1 =

(
−1

2−2
√
17

9

)
, b2 =

( −
√
17
9

− (13+3
√
17)

18

)
,

b3 =

(− (64−19
√
17)

21

− (35−3
√
17)

14

)
, b4 =

( (29−4
√
17)

7

(501−133
√
17)

63

)
,

and Eqs. (1)-(3) is a G5 endpoint interpolation of the full circle, and

(12) dH(c, ρb) = 1− ρ ≈ 1.48× 10−7

for ρ = 486/(243 +
√

67287− 1998
√

17).

Proof. The nonic Bézier curve b with the control points in Eq. (11) has the
error function ψ factorized as

ψ(t) = 128(1373− 333
√

17)t6(2t− 1)6(t− 1)6.

Thus ψ has six zeros at t = 0, 1 and so b is a G5 endpoint interpolation of the

full circle. ψ has the maximum at t0 = 1
2 ±

√
3
6 , and

max
0≤t≤1

ψ(t) =
2(1373− 333

√
17)

39
,

max
0≤t≤1

||b(t)|| =

√
6(1373− 333

√
17) + 310

35
.

Hence Eq. (12) follows. �

The graphes of full circle approximations proposed in Propositions 4.1-4.4
and their curvatures are plotted in Figure 1. Using change of variable t = s+1

2

for s ∈ [−1, 1], the approximation curve b( s+1
2 ) can be expanded in power

basis, as shown in Table 1. The errors of the parametric polynomial curves
approximating the full circle are listed in Table 1, and they are larger than
those of the previous full circle approximation methods [9,10]. The advantages
of our method is that the approximation curves are curvature continuous at
both endpoints and have coefficients in explicit form.

5. Conclusion

In this paper we presented the full circle approximation method using para-
metric polynomial curves of degree n with algebraic coefficients which are cur-
vature continuous at both endpoints and have a total number of 2n contacts
with the full circle at both endpoints and the midpoint. The exact Hausdorff
distances between the full circle and the approximation curves are obtained.
Although our approximation method has larger error than those of previous
full circle approximation methods, our method yieldsG2 parametric polynomial
curves at both endpoints with algebraic coefficients.
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Table 1. Full circle approximation using parametric poly-
nomial curves of degree n with algebraic coefficients involving
rational numbers and radicals.

degree k b( s+1
2 ), s ∈ [−1, 1] dH(c, ρb)

5 2
(

1−4s2+2s4
1√
2
s(1−s)(1+s)(4−s2)

)
4.28× 10−3

6 4
( 1−5s2+4s4−s6+ s2√

2
(1−2s2+s4)√

2+
√
2s(s+1)(1−s)(3−2s2−

√
2(1−s2))

)
4.70× 10−4

7 4
( 1−3s2+s6−

√
5s2(1−2s2+s4)

1
2 s(1−s)(1+s)(−2+7s2−3s4+

√
5(−2−s2+s4))

)
3.06× 10−4

9 6
( 1

4 (4−36s
2+69s4−62s6+21s8+

√
17s2(4−13s2+14s4−5s6)

1
8 s(1−s)(1+s)(−8+63s2−96s4+37s6+

√
17(8−19s2+24s4−9s6))

)
1.48× 10−7
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curvature-continuous Bézier curves, Comput. Aided Geom. Design 7 (1990), no. 1-4,

33–41. https://doi.org/10.1016/0167-8396(90)90019-N

[5] L. Fang, Circular arc approximation by quintic polynomial curves, Comput. Aided
Geom. Design 15 (1998), no. 8, 843–861. https://doi.org/10.1016/S0167-8396(98)

00019-3

[6] M. S. Floater, An O(h2n) Hermite approximation for conic sections, Comput. Aided
Geom. Design 14 (1997), no. 2, 135–151. https://doi.org/10.1016/S0167-8396(96)

00025-8

[7] M. Goldapp, Approximation of circular arcs by cubic polynomials, Comput. Aided
Geom. Design 8 (1991), no. 3, 227–238. https://doi.org/10.1016/0167-8396(91)

90007-X

[8] S. Hur and T. Kim, The best G1 cubic and G2 quartic Bézier approximations of circular
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