DOI QR코드

DOI QR Code

경기도 화성시 우음도 일원의 화강암 암맥군과 U-Pb 연령

Granite Dike Swarm and U-Pb Ages in the Ueumdo, Hwaseong City, Korea

  • 채용운 (부산대학교 지질환경과학과) ;
  • 강희철 (부산대학교 지질환경과학과) ;
  • 김종선 (국립공원공단 국립공원연구원) ;
  • 박정웅 (숭문고등학교) ;
  • 하수진 (부산대학교 지질환경과학과) ;
  • 임현수 (부산대학교 지질환경과학과) ;
  • 신승원 (강원대학교 지질.지구물리학부 지질학전공) ;
  • 김형수 (고려대학교 지구환경과학과)
  • Chae, Yong-Un (Department of Geological Sciences, Pusan National University) ;
  • Kang, Hee-Cheol (Department of Geological Sciences, Pusan National University) ;
  • Kim, Jong-Sun (Korea National Park Research Institute, Korea National Park Service) ;
  • Park, Jeong-Woong (Soong-Moon High School) ;
  • Ha, Sujin (Department of Geological Sciences, Pusan National University) ;
  • Lim, Hyoun Soo (Department of Geological Sciences, Pusan National University) ;
  • Shin, Seungwon (Department of Geology, Kangwon National University) ;
  • Kim, Hyeong Soo (Department of Earth and Environmental Sciences, Korea University)
  • 투고 : 2022.10.08
  • 심사 : 2022.10.30
  • 발행 : 2022.10.31

초록

경기육괴 중서부에 위치한 화성시 우음도 일대에는 고원생대 호상편마암을 관입하고 있는 중기 쥐라기의 화강암 암맥군이 발달한다. 우음도 일대의 대표 노두에서 야외 횡절관계를 근거하면 4개의 암맥들(UE-A, UE-C, UE-D, UE-E)로 구분되며, 방향성에 따라서는 북서 방향(UE-A 암맥), 북서 내지 서북서 방향(UE-C 암맥), 북동 방향(UE-D 및 UE-E 암맥)의 3개의 암맥군으로 나타난다. 이들 화강암 암맥들은 괴상의 중립~조립질의 흑운모 화강암으로 야외에서 관찰된 이들의 상대연령은 UE-A, UE-D (=UE-E), UE-C 순으로 젊어진다. 또한 암맥들의 기하학적 분석으로부터 UEA 및 UE-C 암맥은 대략 북동-남서 방향의 최소수평응력장 하에서 관입한 것으로 판단된다. 주원소 분석에 의한 SiO2 평균 함량에서 비교적 낮은 값을 보인 UE-A 암맥은 다른 암맥들보다 초기 마그마 분화의 산물임을 지시하여 암맥들의 상대연령과도 부합한다. SHRIMP 저어콘 U-Pb 연대측정으로부터 구한 암맥별 206Pb/238U 누적평균연령은 각각 약 167 Ma (UE-A), 164 Ma (UE-C), 167 Ma (UE-D), 167 Ma (UE-E)로 UE-A, UE-D, UE-E 암맥들은 매우 유사한 연령을 보이며 이들 암맥 중 가장 세립인 UE-C 암맥은 가장 젊은 연령을 나타내어 야외에서 관찰한 상호 횡절관계에 의한 상대연령과 주원소 분석 결과와도 일치한다. 따라서 연구지역의 화강암 암맥들은 중생대 중기 쥐라기(약 167 Ma와 164 Ma)에 짧은 시간 간격을 두고 다양한 화강암질 마그마가 관입한 결과이며, 이들 관입 시기는 지리적으로 중기 쥐라기 암체들이 널리 분포하고 있는 경기육괴의 심성암체들과 일치하는 연령이다. 따라서 연구지역의 화강암 암맥군은 지구조적으로 쥐라기 동안 섭입하는 해양판의 얕아지는 섭입각과 함께 북서 방향으로 이동하는 화성활동의 결과로 형성되었음을 의미한다.

The Middle Jurassic granite dike swarm intruding into the Paleoproterozoic banded gneiss is pervasively observed in Ueumdo, Hwaseong City, mid-western Gyeonggi Massif. Based on their cross-cutting relationships in a representative outcrop, there are four dikes (UE-A, UE-C, UE-D, UE-E), and depending on the direction, there are three granite dike groups, which are NW- (UE-A dike), NW to WNW- (UE-C dike), and NE-trending (UE-D and UE-E dikes). These granite dikes are massive, medium-to coarse-grained biotite granites, and their relative ages observed in outcrops are in the order of UE-A, UE-D (=UE-E), and UE-C. The geometric analysis of the dikes indicates that the UE-A and UE-C dikes intrude under approximately NE-SW trending horizontal minimum stress fields. The UE-A dike, which showed a relatively low average SiO2 content by major element analysis, is a product of early magma differentiation compared to other dikes; therefore, it is consistent with the relative age of each dike. The 206Pb/238U weighted mean ages for each dike obtained from SHRIMP zircon U-Pb dating were calculated to be 167 Ma (UE-A), 164 Ma (UE-C), 167 Ma (UE-D), and 167 Ma (UE-E), respectively. The samples of the UE-A, UE-D, and UE-E dikes showed very similar ages. The UE-C dike shows the youngest age, which is consistent with the results of the relative age in the outcrops and major element analysis. Therefore, the granite dikes intruded into the Middle Jurassic (approximately 167 and 164 Ma), coinciding with those of the Gyeonggi Massif, where the Middle Jurassic plutons are geographically widely distributed. This result indicates that the wide occurrence of the Middle Jurassic plutons on the Gyeonggi Massif was formed as a result of igneous activity moving in the northwest direction with the shallower subduction angle of the subducting oceanic plate during the Jurassic.

키워드

과제정보

이 논문은 부산대학교 기본연구지원사업(2년)에 의해 지원되었습니다. 연구과정에서 많은 도움을 주신 화성시와 화성지질공원에 감사드리며, 세심하게 논문을 검토하고 좋은 의견을 주신 두분의 심사위원과 편집위원님께도 진심으로 감사드립니다.

참고문헌

  1. Castillo, P.R., 2012, Adakite petrogenesis. Lithos, 134-135, 304-316. https://doi.org/10.1016/j.lithos.2011.09.013
  2. Castillo, P.R., Janney, P.E., and Solidum, R.U., 1999, Petrology and geochemistry of Camiguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting. Contributions to mineralogy and petrology, 134, 33-51. https://doi.org/10.1007/s004100050467
  3. Cheong, C.S., Kim, N., Kim, J., Yi, K., Jeong, Y.J., Park, C.S., Li, H.K., and Cho, M., 2014, Petrogen?esis of Late Permian sodic metagranitoids in southeastern Korea: SHRIMP zircon geochronology and elemental and Nd-Hf isotope geochemistry. Journal of Asian Earth Sciences, 95(1), 228-242. https://doi.org/10.1016/j.jseaes.2014.06.005
  4. Cheong, A.C.S., and Jo, H.J., 2020, Tectonomagmatic evolution of a Jurassic Cordilleran flare-up along the Korean Peninsula: Geochronological and geochemical constraints from granitoid rocks. Gondwana Research, 88, 21-44. https://doi.org/10.1016/j.gr.2020.06.025
  5. Cho, D.-L., Lee, S.R., and Armstrong, R., 2008, Termination of the Permo-Triassic Songrim (Indosinian) orogeny in the Ogcheon belt, South Korea: Occurrence of ca. 220 Ma post-orogenic alkali granites and their tectonic implications. Lithos, 105(3), 191-200. https://doi.org/10.1016/j.lithos.2008.03.007
  6. Choi, P.-Y., Kim, H., Lee, S.R., and Gwon, S., 2009, Geological report of the Inje sheet (1:50,000). Korea Institute of Geoscience and Mineral Resources, 41 p.
  7. Choi, S.G., Rajesh, V.J., Seo, J., Park, J.W., Oh, C.W., Pak, S.J., and Kim, S.W., 2009, Petrology, geochronology and tectonic implications of Mesozoic high Ba-Sr granites in the Haemi area, Hongseong Belt, South Korea. Island Arc, 18(2), 266-281.
  8. Chough, S.K., 2013, Geology and Sedimentology of the Korean Peninsula. Elsevier Inc., 363 p.
  9. Condie, K.C., 1973, Archean magmatism and crustal thickening. Geological Society of America Bulletin, 84(9), 2981-2992. https://doi.org/10.1130/0016-7606(1973)84<2981:AMACT>2.0.CO;2
  10. Cox, K.G., Bell, J.D., and Pankhurst, R.J., 1979, The interpretation of igneous rocks. Allen and Unwin, London, 450 p.
  11. Defant, M.J. and Drummond, M.S., 1990, Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294), 662-665. https://doi.org/10.1038/347662a0
  12. Defant, M.J. and Kepezhinskas, P., 2001, Evidence suggests slab melting in arc magmas. Eos, Transactions American Geophysical Union, 82(6), 65-69. https://doi.org/10.1029/01EO00038
  13. Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., and Frost, C.D., 2001, A geochemical classification for granitic rocks. Journal of petrology, 42(11), 2033-2048. https://doi.org/10.1093/petrology/42.11.2033
  14. Gall, L.B., Tshoso, G., Dyment, J., Kampunzu, A.B., Jourdan, F., Feraud, G., Bertrand, H., Aubourg, C. and Vetel, W., 2005, The Okavango giant mafic dyke swarm (NE Botswana): its structural significance within the Karoo Large Igneous Province. Journal of Structural Geology, 27(12), 2234-2255. https://doi.org/10.1016/j.jsg.2005.07.004
  15. Hwang, J.H. and Kim, Y.H., 2007, Explanatory text of the geological map (1:50,000) of Jipori sheet. Korea Institute of Geoscience and Mineral Resources. 54 p.
  16. Hwang, S.G., Kwon, T.H., and Seo, S.H., 2015, Pattern and Origin of the Rhyolitic Dike Swarm, Northeastern Cheongsong, Korea. Mineralogical Society of Korea and Petrological Society of Korea, 24(2), 91-105 (in Korean with English abstract). https://doi.org/10.7854/JPSK.2015.24.2.91
  17. Jo, H.J., Cheong, A.C.S., Yi, K., and Li, X.H., 2018, Juxtaposition of allochthonous terranes in the central Korean Peninsula: evidence from zircon U-Pb ages and O-Hf isotopes in Jurassic granitoids. Chemical Geology, 484, 136-147. https://doi.org/10.1016/j.chemgeo.2017.10.006
  18. Kawaguchi, K. and Oh, C.W., 2021, A review of Permian to Jurassic magmatism along the Korean Peninsula and the Japanese Islands: Tectonic interpretations and a key for paleogeographic reconstructions. Journal of the Geological Society of Korea. 57(4), 565-587. https://doi.org/10.14770/jgsk.2021.57.4.565
  19. Kay, R.W., 1978, Aleutian magnesian andesites: melts from subducted Pacific Ocean crust. Journal of Volcanology and Geothermal Research, 4(1-2), 117-132. https://doi.org/10.1016/0377-0273(78)90032-X
  20. Kee, W.-S., Cho, D.-L., Kim, B.C., and Jin, K., 2005, Geological report of the Pocheon sheet (1:50,000). Korea Institute of Geoscience and Mineral Resources, 66 p. (in Korean with English abstract).
  21. Kee, W.-S., Kim, S.W., Jeong, Y.-J., and Kwon, S., 2010, Characteristics of Jurassic continental arc magmatism in South Korea: tectonic implications. Journal of Geology, 118(3), 305-323. https://doi.org/10.1086/651503
  22. Kee, W.-S., Kim, S.W., Kim, H., Hong, P., Kwon, C.W., Lee, H.-J., Cho, D.-L., Koh, H.J., Song, K.-Y., Byun, U.H., Jang, Y., and Lee, B.C., 2019. Geologic map of Korea. KIGAM, scale 1:1,000,000.
  23. Khan, T., Murata, M., Karim, T., Zafar, M., Ozawa, H., and Rehman, H., 2006, A Cretaceous dike swarm provides evidence of a spreading axis in the back-arc basin of the Kohistan paleo-island arc, northwestern Himalaya, Pakistan. Journal of Asian Earth Science, 29(2), 350-360.
  24. KIGAM, 2001, Tectonic Map of Korea. Korea Institute of Geoscience and Mineral Resources.
  25. Kihm, Y.H. and Hwang, J.H., 2011, Geological report of the Gangneung-Jumunjin sheet (1:50,000). Korea Institute of Geoscience and Mineral Resources, 76 p. (in Korean with English abstract).
  26. Kihm, Y.H., Kim, H., Choi, P.-Y., Hwang, J.H., and Ko, K., 2014, Geological report of the Mokpo sheet (1:50,000). Korea Institute of Geoscience and Mineral Resources, 60 p.
  27. Kim, C.-M., Kim, J.-S., Song, C.W., Son, M., and Choi, S.-J, 2011, Dyke Swarms and Fracture System and their Relative Chronology and Tectonic Implications in the Jukbyeon-Bugu Area, Uljin, East Korea. Mineralogical Society of Korea and Petrological Society of Korea, 20(4), 173-189 (in Korean with English abstract).
  28. Kim, H., Kihm, Y.H., and Kee, W.-S., 2012, Geological report of the Iri sheet (1:50,000). Korea Institute of Geoscience and Mineral Resources, 51 p. (in Korean with English abstract).
  29. Kim, H., Song, K.Y., Kwon, C.W., Lee, Y., and Choi, S.-J., 2018a, 1:100,000 Tectonostratigraphic map of the Dangjin-Daesan area. Korea Institute of Geoscience and Mineral Resources.
  30. Kim, J., Yi, K., Jeong, Y.-J., and Cheong, C.-S., 2011, Geochronological and geochemical constraints on the petrogenesis of Mesozoic high-K granitoids in the central Korean peninsula. Gondwana Research, 20(2), 608-620. https://doi.org/10.1016/j.gr.2010.12.005
  31. Kim, J.I., Choi, S.H., and Yi, K., 2019, Petrogenesis of Mesozoic granites at Garorim Bay, South Korea: evidence for an exotic block within the southwestern Gyeonggi massif?. Geosciences journal, 23(1), 1-20. https://doi.org/10.1007/s12303-018-0031-2
  32. Kim, J.-S., Son, M., Kim, J.S., and Kim, I.-S., 2002, Tertiary Dyke Swarms and their Tectonic Importance in the Southeastern Part of the Korean Peninsula. Mineralogical Society of Korea and Petrological Society of Korea, 11(3-4), 169-181 (in Korean with English abstract).
  33. Kim, S.W., Cho, D.-L., Lee, S.-B., Kwon, S., Park, S.-I., Santosh, M., and Kee, W.-S., 2018b, Mesoproterozoic magmatic suites from the central-western Korean Peninsula: imprints of Columbia disruption in East Asia. Precambrian Res. 306, 155-173. https://doi.org/10.1016/j.precamres.2017.12.038
  34. Kim, S.W., Kwon, S., and Ryu, I.-C., 2009, Geochronological constraints on multiple deformations of the Honam Shear Zone, South Korea. Gondwana Research, 16(1), 82-89. https://doi.org/10.1016/j.gr.2008.12.004
  35. Kim, S.W., Kwon, S., Ko, K., Yi, K., Cho, D.L., Kee, W.S., and Kim, B.C., 2015, Geochronological and geochemical implications of Early to Middle Jurassic continental adakitic arc magmatism in the Korean Peninsula. Lithos, 227, 225-240. https://doi.org/10.1016/j.lithos.2015.04.012
  36. Kim, S.W., Kwon, S., Santosh, M., Cho, D.-L., Kee, W.-S., Lee, S.-B., and Jeong, Y.-J., 2019, Detrital zircon U-Pb and Hf isotope characteristics of the early Neoproterozoic successions in the central-western Korean Peninsula: implication for the Precambrian tectonic history of East Asia. Precambrian Research, 322, 24-41. https://doi.org/10.1016/j.precamres.2018.12.008
  37. Kim, S.W., Oh, C.W., Choi, S.G., Ryu, I.-C., and Itaya, T., 2005, Ridge subduction-related Jurassic plutonism in and around the Okcheon Metamorphic belt, South Korea, and implications for Northeast Asian tectonics. International Geology Review, 47(3), 248-269. https://doi.org/10.2747/0020-6814.47.3.248
  38. Kim, Y.B., Choi, S.J., and Cho, D.-L., 2014, Geological report of the Yeongam sheet (1:50,000). Korea Institute of Geoscience and Mineral Resources, 50 p.
  39. Koh, H.J. and Song, K.Y., 2005, Geological report of the Uijeongbu sheet (1:50,000). Korea Institute of Geoscience and Mineral Resources, 37 p.
  40. Koh, H.J., Kwon, C.W., Park, S.-I., Park, J., and Kee, W.-S., 2013, Geological report of the Julpo sheet (1:50,000). Korea Institute of Geoscience and Mineral Resources, 81 p.
  41. Lee, B-.J., Kim, Y.B., Lee, S.-R., Kim, J.C., Kang, P.J., Choi, H.I., and Jin, M.S., 1999a, Explanatory text of the geological map (1:250,000) of Seoul-Namcheonjeom sheet. Korea Institute of Geoscience and Mineral Resources. 64 p.
  42. Lee, B.-J., Lee S.-R., and Cho, D.-L., 1999b, Explanatory text of the geological map (1:50,000) of Daebudo sheet. Korea Institute of Geoscience and Mineral Resources. 31 p.
  43. Lee, H.-S., 2010, Magmatic and Metamorphic Events from the Early Triassic to the Early Jurassic in the Central Yeongnam Massif, South Korea and their tectonic implications. Ph. D. Thesis, Pukyong National University, 267 p. (in Korean with English abstract).
  44. Lee, S.R., Lee, B.J., Cho, D.L., Kee, W.S., Koh, H.J., Kim, B.C., Song, K.Y., Hang, J.H., and Choi, B.Y., 2003, SHRIMP U-Pb zircon age from granitic rocks in Jeonju shear zone: implications for the age of the Honam shear zone. Annual Joint Conference of Mineralogical and Petrological Society of Korea (Abstracts), 55 p. (in Korean).
  45. Ludwig, K.R., 2008, User's manual for Isoplot 3.6: a geochronological toolkit for Microsoft Excel. Berkeley, CA, Berkeley Geochronology Center Special Publication, 4, 77 p.
  46. Maniar, P.D. and Piccoli, P.M., 1989, Tectonic discrimination of granitoids. Geological society of America bulletin, 101(5), 635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
  47. Marsh, B.D., 1998, On the interpretation of crystal size distributions in magmatic systems. Journal of Petrology, 39(4), 553-599. https://doi.org/10.1093/petroj/39.4.553
  48. Marsh, B.D., 2007, Crystallization of silicate magmas deciphered using crystal size distributions. Journal of the American Ceramic Society, 90(3), 746-757 https://doi.org/10.1111/j.1551-2916.2006.01473.x
  49. Paces, J.B. and Miller Jr., J.D., 1993, Precise U-Pb ages of Duluth Complex and related mafic intrusions, Northeastern Minnesota: geochronological insights to physical, petrogenic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga midcontinent rift system. Journal of Geophysical Research-Solid Earth, 98(B8), 13997-14013. https://doi.org/10.1029/93JB01159
  50. Park, K.H., Kim, M.J., Yang, Y.S., and Cho, K.O., 2010, Age Distribution of the Jurassic Plutons in Korean Peninsula. The Journal of the Petrological Society of Korea, 19(4), 269-281 (in Korean with English abstract).
  51. Park, S.-I, Kwon, S., Kim, S.W., Hong, P.S., and Santosh, M., 2018, A Mesozoic orogenic cycle form postcollision to subduction in the southwestern Korean Peninsula: New structural, geochemical, and chronological evidence. Journal of Asian Earth Sciences, 157, 166-186. https://doi.org/10.1016/j.jseaes.2017.08.009
  52. Park, Y.S., Kim, S.W., Kee, W.-S., Jeong, Y.-J., Yi, K., and Kim, J., 2009, Middle Jurassic tectono-magmatic evolution in the southwestern margin of the Gyeonggi massif, South Korea. Geosciences Journal, 13(3), 217-231. https://doi.org/10.1007/s12303-009-0022-4
  53. Peccerillo, A. and Taylor, S.R., 1976, Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to mineralogy and petrology, 58(1), 63-81. https://doi.org/10.1007/BF00384745
  54. Qian, Q. and Hermann, J., 2013, Partial melting of lower crust at 10-15 kbar: constraints on adakite and TTG formation. Contributions to Mineralogy and Petrology, 165(6), 1195-1224. https://doi.org/10.1007/s00410-013-0854-9
  55. Sagong, H., Kwon, S.-T., and Ree, J.-H., 2005, Mesozoic episodic magmatism in South Korea and its tectonic implication. Tectonics, 24(5), 1-8: TC5002, doi:10.1029/2004TC001720.
  56. Seo, J., Choi, S.-G., and Oh, C.W., 2010, Petrology, geochemistry, and geochronology of the post-collisional Triassic mangerite and syenite in the Gwangcheon area, Hongseong Belt, South Korea. Gondwana Research, 18(2), 479-496. https://doi.org/10.1016/j.gr.2009.12.009
  57. Son, M., Kim, J.-S., Hwang, B.-H., Lee, I.-H., Kim, J., Song, C.W., and Kim, I.-S., 2007, Paleogene dyke swarms in the eastern Geoje Island, Korea: their absolute ages and tectonic implications. Mineralogical Society of Korea and Petrological Society of Korea, 16(2), 82-99 (in Korean with English abstract).
  58. Song, K.-Y. and Cho, D.-L., 2009, Geological report of the Mandaeri sheet (1:50,000). Korea Institute of Geoscience and Mineral Resources, 60 p.
  59. Sun, S.S. and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1), 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
  60. Wang, Q., McDermott, F., Xu, J.F., Bellon, H., and Zhu, Y.T., 2005, Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: lower-crustal melting in an intracontinental setting. Geology, 33(6), 465-468.
  61. White, A.J.R. and Chappell, B.W., 1983, Granitoid types and their distribution in the Lachlan Fold Belt, southeastern Australia. Geological Society of America Memoir, 159, 21-34. https://doi.org/10.1130/MEM159-p21
  62. Yi, K., Cheong, C.-S., Kim, J., Kim, N., Jeong, Y.-J., and Cho, M., 2012, Late Paleozoic to Early Mesozoic arcrelated magmatism in southeastern Korea: SHRIMP zircon geochronology and geochemistry. Lithos, 153, 129-141. https://doi.org/10.1016/j.lithos.2012.02.007
  63. Yi, K., Lee, S., Kwon, S., and Cheong, C.S., 2014, Polyphase tectono-magmatic episodes as revealed by SHRIMP U-Pb geochronology and microanalysis of zircon and titanite from the central Okcheon belt, Korea. Journal of Asian Earth Sciences, 95, 243-253. https://doi.org/10.1016/j.jseaes.2014.04.021
  64. Yoon, R., Song, Y.-S., and Yi, K., 2014, SHRIMP U-Pb zircon ages of the Yeongju and Andong granites, Korea and their implications. Journal of Petrological Society of Korea, 23(3), 209-220 (in Korean with English abstract). https://doi.org/10.7854/JPSK.2014.23.3.209
  65. Yun, H.-S., 1995, Occurrence and petrochemistry of the granites in the Pocheon-Euijeongbu area. Mineralogical Society of Korea and Petrological Society of Korea, 4(2), 91-103 (in Korean with English abstract).
  66. Yun, H.-S., Hong, S.S., and Kim, J., 2006, Petrochemistry of the Pink Hornblende Biotite Granite in the GalmalYeongbug Area of the North Gyeonggi. Mineralogical Society of Korea and Petrological Society of Korea, 15(4), 167-179 (in Korean with English abstract).
  67. Yun, H.-S., Hong, S.S., and Lee, Y.S., 2002, Petrology and petrochemistry of the Jurassic Daebo granites in the Pocheon-Gisanri area. Mineralogical Society of Korea and Petrological Society of Korea, 11(1), 1-16 (in Korean with English abstract).