DOI QR코드

DOI QR Code

Recombinant proteins of spike protein of SARS-CoV-2 with the Omicron receptor-binding domain induce production of highly Omicron-specific neutralizing antibodies

  • Received : 2022.06.28
  • Accepted : 2022.07.25
  • Published : 2022.09.30

Abstract

Various vaccines have been developed to fight severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the coronavirus disease 2019 pandemic. However, new variants of SARS-CoV-2 undermine the effort to fight SARS-CoV-2. Here, we produced S proteins harboring the receptor-binding domain (RBD) of the Omicron variant in plants. Plant-produced S proteins together with adjuvant CIA09A triggered strong immune responses in mice. Antibodies in serum inhibited interaction of recombinant human angiotensin-converting enzyme 2 with RBD of the Omicron variant, but not RBD of other variants. These results suggest that antibodies induced by RBD of the Omicron variant are highly specific for the Omicron RBD, but not for that of other variants.

Keywords

References

  1. Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature 2020;579:265-9. 
  2. Anderson EJ, Rouphael NG, Widge AT, et al. Safety and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults. N Engl J Med 2020;383:2427-38. 
  3. Chen WH, Strych U, Hotez PJ, Bottazzi ME. The SARS-CoV-2 vaccine pipeline: an overview. Curr Trop Med Rep 2020;7:61-4. 
  4. Forni G, Mantovani A; COVID-19 Commission of Accademia Nazionale dei Lincei, Rome. COVID-19 vaccines: where we stand and challenges ahead. Cell Death Differ 2021;28:626-39. 
  5. Awadasseid A, Wu Y, Tanaka Y, Zhang W. Current advances in the development of SARS-CoV-2 vaccines. Int J Biol Sci 2021;17:8-19. 
  6. Haas EJ, Angulo FJ, McLaughlin JM, et al. Impact and effectiveness of mRNA BNT162b2 vaccine against SARSCoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data. Lancet 2021;397:1819-29. 
  7. Kashte S, Gulbake A, El-Amin III SF, Gupta A. COVID-19 vaccines: rapid development, implications, challenges and future prospects. Hum Cell 2021;34:711-33. 
  8. Wang P, Nair MS, Liu L, et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature 2021;593:130-5. 
  9. Araf Y, Akter F, Tang YD, et al. Omicron variant of SARS-CoV-2: genomics, transmissibility, and responses to current COVID-19 vaccines. J Med Virol 2022;94:1825-32. 
  10. Liu J, Liu Y, Xia H, et al. BNT162b2-elicited neutralization of B.1.617 and other SARS-CoV-2 variants. Nature 2021;596:273-5. 
  11. Liu C, Ginn HM, Dejnirattisai W, et al. Reduced neutralization of SARS-CoV-2 B.1.617 by vaccine and convalescent serum. Cell 2021;184:4220-36. 
  12. Bergwerk M, Gonen T, Lustig Y, et al. Covid-19 breakthrough infections in vaccinated health care workers. N Engl J Med 2021;385:1474-84. 
  13. Hsieh CL, Goldsmith JA, Schaub JM, et al. Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. Science 2020;369:1501-5. 
  14. Marillonnet S, Thoeringer C, Kandzia R, Klimyuk V, Gleba Y. Systemic agrobacterium tumefaciens-mediated transfection of viral replicons for efficient transient expression in plants. Nat Biotechnol 2005;23:718-23. 
  15. Islam MR, Son N, Lee J, Lee DW, Sohn EJ, Hwang I. Production of bacteriophage-encoded endolysin, LysP11, in Nicotiana benthamiana and its activity as a potent antimicrobial agent against Erysipelothrix rhusiopathiae. Plant Cell Rep 2019;38:1485-99. 
  16. Wui SR, Kim KS, Ryu JI, et al. Efficient induction of cell-mediated immunity to varicella-zoster virus glycoprotein E co-lyophilized with a cationic liposome-based adjuvant in mice. Vaccine 2019;37:2131-41. 
  17. Wui SR, Ko A, Ryu JI, et al. The Effect of a TLR4 agonist/cationic liposome adjuvant on varicella-zoster virus glycoprotein E vaccine efficacy: antigen presentation, uptake, and delivery to lymph nodes. Pharmaceutics 2021;13:390. 
  18. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020;181:271-80. 
  19. Pfizer. Pfizer and BioNTech provide update on Omicron variant [Internet]. New York (NY): Pfizer; 2021 [cited 2021 Dec 16]. Available from: https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-provide-update-omicron-variant. 
  20. Garcia-Beltran WF, St Denis KJ, Hoelzemer A, et al. mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 omicron variant. Cell 2022;185:457-66. 
  21. Hoffmann M, Kruger N, Schulz S, et al. The Omicron variant is highly resistant against antibody-mediated neutralization: implications for control of the COVID-19 pandemic. Cell 2022;185:447-56. 
  22. Mudd PA, Minervina AA, Pogorelyy MV, et al. SARS-CoV-2 mRNA vaccination elicits a robust and persistent T follicular helper cell response in humans. Cell 2022;185:603-13.