Acknowledgement
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) and funded by the Ministry of Education (NRF-2020R1I1A1A01067241 to SHB).
DOI QR Code
Objectives Noise exposure leads to an increase in the macrophage population. This increment is thought to be caused by the transformation of infiltrated monocytes into macrophages rather than by proliferation of the cochlear resident macrophages. However, studies on infiltrated monocytes in the cochlea are scarce. Thus, we aimed to investigate the infiltration of monocytes and their transformation into macrophages after noise exposure. Methods In wild-type and CX3CR1+/GFPC57/B6 mice, inflammatory monocytes were identified by immunofluorescence of mouse cochlear cells. The findings were confirmed and quantitated by flow cytometry. Results One day after noise exposure, monocytes were identified in the spiral ligament. Flow cytometric analysis confirmed that the monocyte population peaked on post-noise exposure day 1 and decreased thereafter. On day 3 after noise exposure, amoeboid-type macrophages increased in the crista basilaris, and on day 5, they spread to the basilar membrane. Conclusion Infiltrated monocytes were successfully observed 1 day after noise exposure, preceding the increase in the macrophage population. This finding supports the proposal that infiltrated monocytes transform into macrophages.
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) and funded by the Ministry of Education (NRF-2020R1I1A1A01067241 to SHB).