DOI QR코드

DOI QR Code

Synthesis and Low-concentration (50 ppm) NO2 Sensing Properties of Bare and ZnO (n) Decorated TeO2 (p) Nanowires

ZnO가 첨가된 TeO2 나노와이어의 합성 및 저농도(50 ppm) 이산화질소 가스 센싱 특성

  • Yu, Dong Jae (Division of Materials Science and Engineering, Hanyang University) ;
  • Shin, Ka Yoon (Division of Materials Science and Engineering, Hanyang University) ;
  • Oum, Wansik (Division of Materials Science and Engineering, Hanyang University) ;
  • Kang, Suk Woo (Division of Materials Science and Engineering, Hanyang University) ;
  • Kim, Eun Bi (Division of Materials Science and Engineering, Hanyang University) ;
  • Kim, Hyeong Min (Division of Materials Science and Engineering, Hanyang University) ;
  • Kim, Hyoun Woo (Division of Materials Science and Engineering, Hanyang University)
  • 유동재 (한양대학교 신소재공학부) ;
  • 신가윤 (한양대학교 신소재공학부) ;
  • 엄완식 (한양대학교 신소재공학부) ;
  • 강석우 (한양대학교 신소재공학부) ;
  • 김은비 (한양대학교 신소재공학부) ;
  • 김형민 (한양대학교 신소재공학부) ;
  • 김현우 (한양대학교 신소재공학부)
  • Received : 2022.09.06
  • Accepted : 2022.10.11
  • Published : 2022.10.27

Abstract

We report the synthesis and gas sensing properties of bare and ZnO decorated TeO2 nanowires (NWs). A catalyst assisted-vapor-liquid-solid (VLS) growth method was used to synthesize TeO2 NWs and ZnO decoration was performed using an Au-catalyst assisted-VLS growth method followed by a subsequent heat treatment. Structural and morphological analyses using X-ray diffraction (XRD) and scanning/transmission electron microscopies, respectively, demonstrated the formation of bare and ZnO decorated TeO2 NWs with desired phase and morphology. NO2 gas sensing studies were performed at different temperatures ranging from 50 to 400 ℃ towards 50 ppm NO2 gas. The results obtained showed that both sensors had their best optimal sensing temperature at 350 ℃, while ZnO decorated TeO2 NWs sensor showed much better sensitivity towards NO2 relative to a bare TeO2 NWs gas sensor. The reason for the enhanced sensing performance of the ZnO decorated TeO2 NWs sensor was attributed to the formation of ZnO (n)/ TeO2 (p) heterojunctions and the high intrinsic gas sensing properties of ZnO.

Keywords

Acknowledgement

This work was supported by the Technology Innovation Program (20013726) funded By the Ministry of Trade, Industry & Energy (MOTIE, Korea).

References

  1. K.-Y. Kok, T.-F. Choo, N. U. Saidin and C. Z. C. A. Rahman, Mater. Sci. Eng., 298, 012015 (2018).
  2. Y. Shen, A. Fan, D. Wei, S. Gao, W. Liu, C. Han and B. Cui, RSC Adv., 5, 29126 (2015). https://doi.org/10.1039/C5RA00867K
  3. M. Wu, H. Wei, Y. Wei, A. Yao, J. Bu, J. Lin, Z. Dong, Y. Che, C. Yi and Z. Wu, Vib. Spectrosc., 95, 32 (2018). https://doi.org/10.1016/j.vibspec.2018.01.001
  4. S. Khan, K. Hayat, S. Ali, K. Rasool, J ud Din, F. Niaz and Y. Iqba, Mater. Sci. Eng., B, 229, 155 (2018). https://doi.org/10.1016/j.mseb.2017.12.032
  5. M. Kaur, S. Kailasaganapathi, N. Ramgir, N. Datta, S. Kumar, A. K. Debnath, D. K. Aswal and S. K. Gupta, Appl. Surf. Sci., 394, 258 (2017). https://doi.org/10.1016/j.apsusc.2016.10.085
  6. J.-H. Kim, A. Mirzaei, H. W. Kim and S. S. Kim, Sens. Actuators, B, 249, 177 (2017).
  7. K. J. Choi and H. W. Jang, Sensors, 10, 4083 (2010). https://doi.org/10.3390/s100404083
  8. J.-H. Lee, J.-Y. Kim, J.-H. Kim, A. Mirzaei, H. W. Kim and S. S. Kim, Nano Convergence, 4, 27 (2017). https://doi.org/10.1186/s40580-017-0121-2
  9. A. Mirzaei, J.-H. Kim, H. W. Kim and S. S. Kim, Sens. Actuators, B, 258, 270 (2018).
  10. J. G. Lu, P. Chang and Z. Fan, Mater. Sci. Eng. Reports, 52, 49 (2006). https://doi.org/10.1016/j.mser.2006.04.002
  11. Y. J. Kwon, S. Y. Kang, A. Mirzaei, M. S. Choi, J. H. Bang, S. S. Kim and H. W. Kim, Sens. Actuators, B, 249, 656 (2017).
  12. Y. J. Kwon, H. G. Na, S. Y. Kang, M. S. Choi, J. H. Bang, T. W. Kim, A. Mirzaei and H. W. Kim, Sens. Actuators, B, 239, 180 (2017). https://doi.org/10.1016/j.snb.2016.07.177
  13. H.-J. Kim and J.-H. Lee, Sens. Actuators, B, 192, 607 (2014). https://doi.org/10.1016/j.snb.2013.11.005
  14. Y. Wu, M. Hu, Y. Qin, X. Wei, S. Ma and D. Yan, Sens. Actuators, B, 195, 181 (2014).
  15. Y. Zhang, F. Guokang, H. U. Hui, C. Weilong and B. Yan, J. Rare Earths, 34, 1069 (2016). https://doi.org/10.1016/S1002-0721(16)60136-9
  16. A. W. Warner, D. L. White and W. A. Bonner, J. Appl. Phys., 43, 4489 (1972). https://doi.org/10.1063/1.1660950
  17. N. Gupta and V. Voloshinov, Optics Lett, 30, 985 (2005). https://doi.org/10.1364/OL.30.000985
  18. A. Sharma, M. Tomar and V. Gupta, Sens. Actuators, B, 176, 875 (2013). https://doi.org/10.1016/j.snb.2012.09.029
  19. A. Mirzaei, S. Park, G.-J. Sun, H. Kheel and C. Lee, J. Hazard. Mater., 305, 130 (2016). https://doi.org/10.1016/j.jhazmat.2015.11.044
  20. T. Siciliano, M. D. Giulio, M. Tepore, E. Filippo, G. Micocci and A. Tepore, Sens. Actuators, B, 137, 644 (2009). https://doi.org/10.1016/j.snb.2008.12.004
  21. L. Zhu and W. Zeng, Sens. Actuators, A, 267, 242 (2017).
  22. U. Ozgur, Y. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Dogan, V. Avrutin and S.-J. Cho, J. Appl. Phys., 98, 11 (2005).
  23. X. Qu, R. Yang, F. Tong, Y. Zhao and M. H. Wang, Powder Technol., 330, 259 (2018). https://doi.org/10.1016/j.powtec.2018.02.019
  24. A. Mirzaei, S. Park, G.-J. Sun, H. Kheel, C. Lee and S. Lee, J. Korean Phys. Soc., 69, 373 (2016). https://doi.org/10.3938/jkps.69.373
  25. D. R. Miller, S. A. Akbar and P. A. Morris, Sens. Actuators, B, 204, 250 (2014).
  26. Y. J. Kwon, A. Mirzaei, S. Y. Kang, M. S. Choi, J. H. Bang, S. S. Kim and H. W. Kim, Appl. Surf. Sci., 413, 242 (2017). https://doi.org/10.1016/j.apsusc.2017.03.290
  27. J. Y. Park, K. Asokan, S. W. Choi and S. S. Kim, Sens. Actuators, B, 152, 254 (2011).
  28. S. W. Choi, J. Y. Park and S. S. Kim, Nanotechnology, 20, 465603 (2009). https://doi.org/10.1088/0957-4484/20/46/465603
  29. J. Y. Park, S.-W. Choi, J.-W. Lee, C. Lee and S. S. Kim, J. Am. Ceram. Soc., 92, 2551 (2009). https://doi.org/10.1111/j.1551-2916.2009.03270.x
  30. H. W. Kim, S. H. Shim, J. W. Lee, J. Y. Park and S. S. Kim, Chem. Phys. Lett., 456, 193 (2008). https://doi.org/10.1016/j.cplett.2008.03.024
  31. S. W. Nam, Y. J. Kwon, H. Y. Cho, S. Y. Kang, H. G. Na and H. W. Kim, J. Ceram., 16, 385 (2015).
  32. Z. Jing and J. Zhan, Adv. Mater., 20, 4547 (2008). https://doi.org/10.1002/adma.200800243
  33. X. Liu, X. H. Wu, H. Cao and R. P. H. Chang, J. Appl. Phys., 95, 3141 (2004). https://doi.org/10.1063/1.1646440
  34. A. Mirzaei, K. Janghorban, B. Hashemi, M. Bonyani, S. G. Leonardi and G. Neri, Ceram. Int., 42, 6136 (2016). https://doi.org/10.1016/j.ceramint.2015.12.176
  35. Y. J. Kwon, S.-W. Choi, S. Y. Kang, M. S. Choi, J. H. Bang, S. S. Kim and H. W. Kim, Sens. Actuators, B, 244, 1085 (2017). https://doi.org/10.1016/j.snb.2017.01.078
  36. M. S. Choi, J. H. Bang, A. Mirzaei, H. G. Na, C. Jin, W. Oum, S. S. Kim and H. W. Kim, Appl. Surf. Sci., 484, 1102 (2019). https://doi.org/10.1016/j.apsusc.2019.04.122
  37. H. W. Kim, Y. J. Kwon, A. Mirzaei, S. Y. Kang, M. S. Choi, J. H. Bang, S. S. Kim, Sens. Actuators, B, 249, 590 (2017).
  38. P. Rai, Y. S. Kim, H. M. Song, M. K. Song, Y. T. Yu, Sens. Actuators, B, 165, 133 (2012).
  39. A. Mirzaei, K. Janghorban, B. Hashemi, A. Bonavita, M. Bonyani, S. G.Leonardi, G. Neri, Nanomaterials, 5, 737 (2015). https://doi.org/10.3390/nano5020737
  40. S. An, S. Park, H. Ko, C. Jin, W. I. Lee , C. Lee, Thin Solid Films, 547, 241 (2013). https://doi.org/10.1016/j.tsf.2013.02.021
  41. S. Park, H. Ko, S. Kim, C. Lee, Ceram. Int., 40, 8305 (2014). https://doi.org/10.1016/j.ceramint.2014.01.035
  42. J.-H. Kim, J.-H. Lee, A. Mirzaei, H. W. Kim, S. S. Kim, Sens. Actuators, B, 258, 204 (2018).
  43. N. Yamazoe, G. Sakai, K. Shimanoe, Catal. Surv. Jpn., 7, 63 (2003). https://doi.org/10.1023/A:1023436725457
  44. A. Katoch, J. H. Kim, Y. J. Kwon, H. W. Kim, S. S. Kim, ACS Appl. Mater. Interfaces, 7, 11351 (2015).
  45. A. Katoch, Z. U. Abideen, H. W. Kim, S. S. Kim, ACS Appl. Mater. Interfaces, 8, 2486 (2016).
  46. Y. Wu, M. Hu, Y. Qin, X. Wei, S. Ma, D. Yan, Sens. Actuators, B, 195, 181 (2014).