DOI QR코드

DOI QR Code

LiDAR의 특성을 고려한 자율주행 대응 교통콘 개선 실증 연구

Empirical Research on Improving Traffic Cone Considering LiDAR's Characteristics

  • 김지윤 (한국건설기술연구원 도로교통연구본부) ;
  • 김지수 (한국건설기술연구원 도로교통연구본부)
  • Kim, Jiyoon (Department of Highway & Transportation Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Jisoo (Department of Highway & Transportation Research, Korea Institute of Civil Engineering and Building Technology)
  • 투고 : 2022.08.24
  • 심사 : 2022.09.05
  • 발행 : 2022.10.31

초록

자율주행자동차는 센서를 통해 수집되는 정보에 의존해 주행을 한다. 따라서, 센서로부터 수집되는 정보의 불확실성은 해결해야 할 중요한 부분이다. 이를 위하여 도로·교통 분야에서는 인프라 또는 시설물을 통해 이러한 센서의 불확실성을 해결하기 위한 연구를 수행한다. 본 연구는 이러한 자율주행 지원 인프라 개발 연구의 일환으로 강우 상황에서도 충분히 LiDAR의 검지성능이 확보되어 공사구간에서 시선유도 기능을 유지할 수 있는 교통콘을 개발하여 이의 개선효과를 실증을 통해 검증하였다. 연구진이 개발한 개선 교통콘은 기존의 원뿔형보다 반사 성능이 증대될 수 있도록 직교형과 평면형 2가지 형태로 제작하였다. 실증수행 결과, 평면형 교통콘은 운전자의 시야확보가 불가능한 수준인 50 mm/h 강우 환경에서도 기존 교통콘에 비하여 우수한 검지성능이 확보됨을 확인할 수 있었다. 또한 두 개선 교통콘 모두 강우 비중이 높은 20 mm/h 수준에서는 맑은 날 수준의 검지수준이 유지되는 것도 확인하였다. 향후, 자율주행의 안전을 유도할 수 있는 교통콘이 현장에서 실제로 적용될 수 있도록 개선방안을 발전시켜 나가야 할 것이다.

Automated vehicles rely on information collected through sensors to drive. Therefore, the uncertainty of the information collected from a sensor is an important to address. To this end, research is conducted in the field of road and traffic to solve the uncertainty of these sensors through infrastructure or facilities. Therefore, this study developed a traffic cone that can maintaing the gaze guidance function in the construction site by securing sufficient LiDAR detection performance even in rainy conditions and verified its improvement effect through demonstration. Two types of cones were manufactured, a cross-type and a flat-type, to increase the reflective performance compared to an existing cone. The demonstration confirms that the flat-type traffic cone has better detection performance than an existing cone, even in 50 mm/h rainfall, which affects a driver's field of vision. In addition, it was confirmed that the detection level on a clear day was maintained at the 20 mm/h rain for both cones. In the future, improvement measures should be developed so that the traffic cones, that can improve the safety of automated driving, can be applied.

키워드

과제정보

본 연구는 한국건설기술연구원의 주요사업(미래교통 스마트 인프라 핵심기술개발)의 지원을 받아 수행하였습니다.

참고문헌

  1. Favaro, F., Eurich, S. and Nader, N.(2018), "Autonomous vehicles' disengagements: Trends, triggers, and regulatory limitations", Accident Analysis & Prevention, vol. 110, pp.136-148. https://doi.org/10.1016/j.aap.2017.11.001
  2. Goberville, N., El-Yabroudi, M., Omwanas, M., Rojas, J., Meyer, R., Asher, Z. and Abdel-Qader, I.(2020), "Analysis of LiDAR and Camera Data in Real-World Weather Conditions for Autonomous Vehicle Operations", Society of Automotive Engineers(SAE) International Journal of Advances and Current Practices in Mobility, SAE International, Warrendale, Pennsylvania, USA, vol. 2, no. 5, pp.2428-2434.
  3. Goodin, C., Carruth, D., Doude, M. and Hudson, C.(2019), "Predicting the Influence of Rain on LiDAR in ADAS", Electronics, vol. 8, no. 1, p.89, doi: 10.3390/electronics8010089
  4. Im, L., Choi, K., Jeong, J. and Lee, I.(2015), "Development of a General Purpose Simulator for Evaluation of Vehicle LiDAR Sensors and its Application", Korean Journal of Remote Sensing, vol. 31, no. 3, pp.267-279. https://doi.org/10.7780/KJRS.2015.31.3.6
  5. Jeon, H. and Kim, J.(2021), "Analysis on Handicaps of Automated Vehicle and Their Causes using IPA and FGI", Journal of Korea Institute of Intelligent Transport Systems, The Korea Institute of Intelligent Transport Systems, vol. 20, no. 3, pp.34-46. https://doi.org/10.12815/kits.2021.20.3.34
  6. Kim, J. and Park, B.(2022), "A Study of LiDAR's Detection Performance Degradation in Fog and Rain Climate", Journal of Korea Institute Intelligent Transportation Systems, The Korea Institute of Intelligent Transport Systems, vol. 21, no. 2, pp.101-115. https://doi.org/10.12815/kits.2022.21.2.101
  7. Kim, J., Park, B., Roh, C. and Kim, Y.(2021), "Performance of Mobile LiDAR in the Real Road Driving Conditions", Sensors, vol. 21, no. 22, p.7461, doi: 10.3390/s2201010
  8. Kim, W. K.(2020), "Main Contents and Future Plans of the Automated Driving Technology Development Innovation Project", Monthly Korea Transport Institute(KOTI) Magazine on Transportation, vol. 272, pp.27-35.
  9. Klynveld Peat Marwick Goerdeler(KPMG) International(2020), 2020 Autonomous Vehicle Readiness Index, p.1.
  10. Korea Institute of Civil Engineering and Building Technology(KICT)(2019), Improvement Road Infrastructures to Strengthen Driving Safety of Automated Driving Car, the Second report, South Korea.
  11. Korea Institute of Civil Engineering and Building Technology(KICT)(2021), Improvement Road Infrastructures to Strengthen Driving Safety of Automated Driving Car, the Second report, South Korea.
  12. Kutila, M., Pyykonen, P., Ritter, W., Sawade, O. and Schaufele, B.(2016), "Automative LiDAR Sensor Development Scenarios for Harsh Weather Conditions", IEEE 19th International Conference on Intelligent Transportation Systems(ITSC), Rio De Janeiro, Brazil, IEEE, Newyork, pp.265-270.
  13. Lambert, J., Carballo, A., Cano, A. M., Narksri, P., Wong, D., Takeuchi, E. and Takeda, K.(2020), "Performance Analysis of 10 Models of 3D LiDARs for Automated Driving", IEEE Access, vol. 8, pp.131699-131722, doi: 10.1109/ACCESS.2020.3009680
  14. Lee, H. and Seo, S. W.(2015), "Stable and Precise Multi-Lane Detection Algorithm Using Lidar in Challenging Highway Scenario", Journal of the Institute of Electronics and Information Engineers, The Institute of Electronics and Information Engineers, vol. 52, no. 12, pp.158-164. https://doi.org/10.5573/IEIE.2015.52.12.158
  15. Montalban, K., Reymann, C., Atchuthan, D., Dupouy, P. E., Riviere, N. and Lacroix, S.(2021), "A Quantitative Analysis of Point Clouds from Automotive Lidars Exposed to Artificial Rain and Fog", Atmosphere, vol. 12, no. 6, p.738. https://doi.org/10.3390/atmos12060738
  16. Park, B. and Kim, J.(2021), "A Study of LiDAR's Performance Change by Road Sign's Color and Climate", Journal of Korea Institute Intelligent Transportation System, The Korea Institute of Intelligent Transport Systems, vol. 20, no. 6. pp.228-241. https://doi.org/10.12815/kits.2021.20.6.228
  17. Park, B.(2022), "Method of improvements for autonomous vehicle road-traffic facilities using LiDAR", Proceedings of the KITS International Conference 2022, Seogwuipo, Jeju, Korea, 15-18 June 2022.
  18. Robosense(2019), RS-LiDAR-32 Brochure, China.
  19. Roh, C. G. and Im, I. J.(2020), "A review on Handcap Sections and Situations to Improve Driving Safety of Automated Vehicles", Sustainability acronym of Multidisciplinary Digital Publishing Institute(MDPI), vol. 12, p.5509, doi: 10.3390/su12145509
  20. Schoettle, B.(2017), Sensor Fusion: A Comparison of Sensing Capabilities of Human Drivers and Highly Automated Vehicles, Sustainable Worldwide Transportation(SWT)-2017-12, University of Michigan, Transportation Research Institute, Ann Arbor, USA.
  21. Snyder, J., Dunn, D., Howard, J., Potts, T. and Hansen, K.(2018), Invisible 2D Bar Code to Enable Machine Readability of Road Signs-Material, 3M Company, St. Paul, Minnesota.
  22. Tang, L., Shi, Y., He, Q., Sadek, A. W. and Ciao, C.(2020), "Performance Test of Autonomous Vehicle Lidar Sensors Under Different Weather Conditions", Transportation Research Record, vol. 2674, no. 1, pp.319-329.
  23. YTN(2022), Tesla's sudden braking defect complaints follow...U.S. authorities begin investigation, Available online: https://www.ytn.co.kr/_ln/0104_202202031140110093, 2022.06.03.
  24. Yun, H. N., Kim, S. L., Lee, J. W. and Yang, J. H.(2018), "Analysis of Cause Disengagement Based on U.S. California DMV Autonomous Driving Disengagement Report", Transaction of the Korean Society of Automotive Engineers(KSAE), vol. 26, no. 4, pp.464-475. https://doi.org/10.7467/KSAE.2018.26.4.464