DOI QR코드

DOI QR Code

Development of a Plastid DNA-Based Maker for the Identification of Five Medicago Plants in South Korea

  • Received : 2022.08.16
  • Accepted : 2022.09.15
  • Published : 2022.11.01

Abstract

DNA markers have been studied and used intensively to identify plant species based on molecular approaches. The genus Medicago belongs to the family Fabaceae and contains 87 species distributed from the Mediterranean to central Asia. Five species of Medicago are known to be distributed in South Korea; however, their morphological characteristics alone cannot distinguish the species. In this study, we analyzed the phylogenetic relationships using collected five species of Medicago from South Korea and 44 taxa nucleotide information from NCBI. The constructed phylogenetic tree using gibberellin 3-oxidase 1 and tRNALys (UUU) to maturase K gene sequences showed the monophyly of the genus Medicago, with five species each forming a single clade. These results suggest that there are five species of Medicago distributed in South Korea. In addition, we designed polymerase chain reaction primers for species-specific detection of Medicago by comparing the plastid sequences. The accuracy of the designed primer pairs was confirmed for each Medicago species. The findings of this study provide efficient and novel species identification methods for Medicago, which will assist in the identification of wild plants for the management of alien species and living modified organisms.

Keywords

Acknowledgement

This research was supported by a grant from the National Institute of Ecology (NIE) and funded by the Ministry of Environment of the Republic of Korea (NIE-A-2022-06 and NIE-A-2022-07).

References

  1. Abid, S., Mohanan, P., Kaliraj, L., Park, J.K., Ahn, J.C., and Yang, D.C. (2019). Development of species-specific chloroplast markers for the authentication of Gynostemma pentaphyllum and their distribution in the Korean peninsula. Fitoterapia, 138, 104295. https://doi.org/10.1016/j.fitote.2019.104295
  2. An, J., Moon, J.C., Kim, J.H., Kim, G.S., and Jang, C.S. (2019). Development of DNA-based species-specific real-time PCR markers for four berry fruits and their application in commercial berry fruit foods. Applied Biological Chemistry, 62, 10. https://doi.org/10.1186/s13765-019-0413-9
  3. Asahina, H., Shinozaki, J., Masuda, K., Morimitsu, Y., and Satake, M. (2010). Identification of medicinal Dendrobium species by phylogenetic analyses using matK and rbcL sequences. Journal of Natural Medicines, 64, 133-138. https://doi.org/10.1007/s11418-009-0379-8
  4. Azizi, M., Lau, H.Y., and Abu-Bakar, N. (2021). Integration of advanced technologies for plant variety and cultivar identification. Journal of Biosciences, 46, 91. https://doi.org/10.1007/s12038-021-00214-x
  5. Chen, J., Wu, G., Shrestha, N., Wu, S., Guo, W., Yin, M., et al. (2021). Phylogeny and species delimitation of Chinese Medicago (Leguminosae) and its relatives based on molecular and morphological evidence. Frontiers in Plant Science, 11, 619799. https://doi.org/10.3389/fpls.2020.619799
  6. Choi, I.S., Wojciechowski, M.F., Steele, K.P., Hunter, S.G., Ruhlman, T.A., and Jansen, R.K. (2022). Born in the mitochondrion and raised in the nucleus: evolution of a novel tandem repeat family in Medicago polymorpha (Fabaceae). The Plant Journal, 110, 389-406. https://doi.org/10.1111/tpj.15676
  7. Choi, S.W., An, J.S., and Yang, H.S. (2015). Effect of island geography on plant species on uninhabited islands in southeastern South Korea. Journal of Ecology and Environment, 38, 451-459. https://doi.org/10.5141/ecoenv.2015.048
  8. Choi, W., Kim, I.R., Lim, H.S., and Lee, J.R. (2020). A multiplex PCR method for the detection of genetically modified alfalfa (Medicago sativa L.) and analysis of feral alfalfa in South Korea. Proceedings of the National Institute of Ecology of the Republic of Korea, 1, 83-89.
  9. Dar, A.A., Mahajan, R., and Sharma, S. (2019). Molecular markers for characterization and conservation of plant genetic resources. Indian Journal of Agricultural Sciences, 89, 1755-1763.
  10. Dong, W., Liu, J., Yu, J., Wang, L., and Zhou, S. (2012). Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding. PloS One, 7, e35071. https://doi.org/10.1371/journal.pone.0035071
  11. Echeverria, A., Larrainzar, E., Li, W., Watanabe, Y., Sato, M., Tran, C.D., et al. (2021). Medicago sativa and Medicago truncatula show contrasting root metabolic responses to drought. Frontiers in Plant Science, 12, 652143. https://doi.org/10.3389/fpls.2021.652143
  12. Fazekas, A.J., Burgess, K.S., Kesanakurti, P.R., Graham, S.W., Newmaster, S.G., Husband, B.C., et al. (2008). Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well. PloS One, 3, e2802. https://doi.org/10.1371/journal.pone.0002802
  13. Felsenstein, J. (1985). Phylogenies and the comparative method. The American Naturalist, 125, 1-15. https://doi.org/10.1086/284325
  14. Gao, L., Zhou, Y., Wang, Z.W., Su, Y.J., and Wang, T. (2011). Evolution of the rpoB-psbZ region in fern plastid genomes: notable structural rearrangements and highly variable intergenic spacers. BMC Plant Biology, 11, 64. https://doi.org/10.1186/1471-2229-11-64
  15. Guertler, P., Grohmann, L., Naumann, H., Pavlovic, M., and Busch, U. (2019). Development of event-specific qPCR detection methods for genetically modified alfalfa events J101, J163 and KK179. Biomolecular Detection and Quantification, 17, 100076. https://doi.org/10.1016/j.bdq.2018.12.001
  16. Hall, T. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95-98.
  17. Hu, D., Li, F., Liu, J., Sun, Y., Li, X., Yan, J., et al. (2014). Systematic positions of Medicago Edgeworthii and M. archiducisnicolai (Leguminosae) inferred from plastid trnK/matK, nuclear GA30X1 and its sequences. Pakistan Journal of Botany, 46, 775-778.
  18. Hwang, H.S., Jang, J.W., Jung, S.Y., Lee, H.J., Oh, S.H., and Yang, J.C. (2013). Distributional characteristics of plants in Hajo Island of Jeollanam-do, South Korea. Journal of AsiaPacific Biodiversity, 6, 435-448.
  19. Kil, J.H., Shim, K.C., Park, S.H., Koh, K.S., Suh, M.H., Ku, Y.B., et al. (2004). Distributions of naturalized alien plants in South Korea. Weed Technology, 18, 1493-1495. https://doi.org/10.1614/0890-037X(2004)018[1493:DONAPI]2.0.CO;2
  20. Kim, I.R., Lim, H.S., Choi, W., Kang, D.I., Lee, S.Y., and Lee, J.R. (2020). Monitoring living modified canola using an efficient multiplex PCR assay in natural environments in South Korea. Applied Sciences, 10, 7721. https://doi.org/10.3390/app10217721
  21. Kim, K.D. (2005). Invasive plants on disturbed Korean sand dunes. Estuarine, Coastal and Shelf Science, 62, 353-364. https://doi.org/10.1016/j.ecss.2004.09.023
  22. Koya, V., Moayeri, M., Leppla, S.H., and Daniell, H. (2005). Plant-based vaccine: mice immunized with chloroplast-derived anthrax protective antigen survive anthrax lethal toxin challenge. Infection and Immunity, 73, 8266-8274. https://doi.org/10.1128/IAI.73.12.8266-8274.2005
  23. Kress, W.J., and Erickson, D.L. (2007). A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. PloS One, 2, e508. https://doi.org/10.1371/journal.pone.0000508
  24. Lee, J.W., Kim, S.J., An, J.B., Nam, K.B., Shin, H.T., and Jung, S.Y. (2018). Distribution characteristics of invasive alien plants in Jejudo. Journal of Asia-Pacific Biodiversity, 11, 276-283. https://doi.org/10.1016/j.japb.2018.02.004
  25. Lee, S.J., Shin, Y.W., Kim, Y.H., and Lee, S.W. (2017). Molecular markers based on chloroplast and nuclear ribosomal DNA regions which distinguish Korean-specific ecotypes of the medicinal plant Cudrania tricuspidata Bureau. Journal of Plant Biotechnology, 44, 235-242. https://doi.org/10.5010/JPB.2017.44.3.235
  26. Lee, T.B. (1976). Vascular plants and their uses in Korea. Bulletin of the Kwanak Arboretum, 1, 1-137. Retrieved May 14, 2022 from https://s-space.snu.ac.kr/handle/10371/67084. 10371/67084
  27. Li, H., Xiao, W., Tong, T., Li, Y., Zhang, M., Lin, X., et al. (2021). The specific DNA barcodes based on chloroplast genes for species identification of Orchidaceae plants. Scientific Reports, 11, 1424. https://doi.org/10.1038/s41598-021-81087-w
  28. Marakli, S. (2018). A brief review of molecular markers to analyse medicinally important plants. International Journal of Life Sciences and Biotechnology, 1, 29-36. https://doi.org/10.38001/ijlsb.438133
  29. McCauley, D.E. (1995). The use of chloroplast DNA polymorphism in studies of gene flow in plants. Trends in Ecology & Evolution, 10, 198-202. https://doi.org/10.1016/S0169-5347(00)89052-7
  30. Moon, J.C., Kim, J.H., and Jang, C.S. (2016). Development of multiplex PCR for species-specific identification of the Poaceae family based on chloroplast gene, rpoC2. Applied Biological Chemistry, 59, 201-207. https://doi.org/10.1007/s13765-016-0155-x
  31. Morley, S.A., and Nielsen, B.L. (2016). Chloroplast DNA copy number changes during plant development in organelle DNA polymerase mutants. Frontiers in Plant Science, 7, 57.
  32. Nguyen, V.B., Linh Giang, V.N., Waminal, N.E., Park, H.S., Kim, N.H., Jang, W., et al. (2020). Comprehensive comparative analysis of chloroplast genomes from seven Panax species and development of an authentication system based on species-unique single nucleotide polymorphism markers. Journal of Ginseng Research, 44, 135-144. https://doi.org/10.1016/j.jgr.2018.06.003
  33. Scriver, M., Marinich, A., Wilson, C., and Freeland, J. (2015). Development of species-specific environmental DNA (eDNA) markers for invasive aquatic plants. Aquatic Botany, 122, 27-31. https://doi.org/10.1016/j.aquabot.2015.01.003
  34. Song, I., and Park, S. (2019). Distribution of naturalized plants in historic sites and urban park of Gyeongju-si, South Korea. Korean Journal of Environmental Biology,37, 144-154. https://doi.org/10.11626/KJEB.2019.37.2.144
  35. Steele, K.P., Ickert-Bond, S.M., Zarre, S., and Wojciechowski, M.F. (2010). Phylogeny and character evolution in Medicago (Leguminosae): evidence from analyses of plastid trnK/matK and nuclear GA3ox1 sequences. American Journal of Botany, 97, 1142-1155. https://doi.org/10.3732/ajb.1000009
  36. Tamura, K., Stecher, G., and Kumar, S. (2021). MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38, 3022-3027. https://doi.org/10.1093/molbev/msab120
  37. Terrones, A., Moreno, J., and Juan, A. (2021). DNA barcoding supports an easier identification of alien plants: the case of the genus Physalis (Solanaceae) in the Iberian Peninsula (SPAIN). Annali Di Botanica, 11, 105-120.
  38. Thanopoulos, R. (2007). The genus Medicago in Greece: 1. A review of species diversity, geographical distribution and ecological adaptation. Flora Mediterranea, 17, 217-276.
  39. Van Berkum, P., Beyene, D., Bao, G., Campbell, T.A., and Eardly, B.D. (1998). Rhizobium mongolense sp. nov. is one of three rhizobial genotypes identified which nodulate and form nitrogen-fixing symbioses with Medicago ruthenica [(L.) Ledebour]. International Journal of Systematic Bacteriology, 48, 13-22. https://doi.org/10.1099/00207713-48-1-13
  40. Wachowiak, W., Baczkiewicz, A., Celinski, K., and Prus-Glowacki, W. (2004). Species-specific chloroplast DNA polymorphism in the trnV-rbcL region in Pinus sylvestris and P. mugo. Dendrobiology, 51, 67-72.
  41. Wu, Z., Raven, P.H., and Hong, D. (2010). Flora of China. 10, Fabaceae. St. Louis: Missouri Botanical Garden.
  42. You, J.H. (2018). Vascular plants of construct-reserved site of ecological stream, Sohyeoncheon in Gyeongju-si. Journal of the Korean Society of Environmental Restoration Technology, 21, 61-79.
  43. Zhang, Y., Iaffaldano, B.J., Zhuang, X., Cardina, J., and Cornish, K. (2017). Chloroplast genome resources and molecular markers differentiate rubber dandelion species from weedy relatives. BMC Plant Biology, 17, 34. https://doi.org/10.1186/s12870-016-0967-1