DOI QR코드

DOI QR Code

Biological Characteristics of Recombinant Arthrobotrys oligospora Chitinase AO-801

  • Gong, Shasha (College of Animal Science & Technology, Shihezi University) ;
  • Meng, Qingling (College of Animal Science & Technology, Shihezi University) ;
  • Qiao, Jun (College of Animal Science & Technology, Shihezi University) ;
  • Huang, Yunfu (College of Animal Science & Technology, Shihezi University) ;
  • Zhong, Wenqiang (College of Animal Science & Technology, Shihezi University) ;
  • Zhang, Guowu (College of Animal Science & Technology, Shihezi University) ;
  • Zhang, Kai (College of Animal Science & Technology, Shihezi University) ;
  • Li, Ningxing (College of Animal Science & Technology, Shihezi University) ;
  • Shang, Yunxia (College of Animal Science & Technology, Shihezi University) ;
  • Li, Zhiyuan (College of Animal Science & Technology, Shihezi University) ;
  • Cai, Xuepeng (State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences)
  • Received : 2022.08.06
  • Accepted : 2022.09.15
  • Published : 2022.10.31

Abstract

Chitinase AO-801 is a hydrolase secreted by Arthrobotrys oligospora during nematode feeding, while its role remained elusive. This study analyzed the molecular characteristics of recombinant chitinase of Arthrobotrys oligospora (reAO-801). AO-801 belongs to the typical glycoside hydrolase 18 family with conserved chitinase sequence and tertiary structure of (α/β)8 triose-phosphate isomerase (TIM) barrel. The molecular weight of reAO-801 was 42 kDa. reAO-801 effectively degraded colloidal and powdered chitin, egg lysate, and stage I larval lysate of Caenorhabditis elegans. The activity of reAO-801 reached its peak at 40℃ and pH values between 4-7. Enzyme activity was inhibited by Zn2+, Ca2+, and Fe3+, whereas Mg2+ and K+ potentiated its activity. In addition, urea, sodium dodecyl sulfate, and 2-mercaptoethanol significantly inhibited enzyme activity. reAO-801 showed complete nematicidal activity against C. elegans stage I larvae. reAO-801 broke down the C. elegans egg shells, causing them to die or die prematurely by hatching the eggs. It also invoked degradation of Haemonchus contortus eggs, resulting in apparent changes in the morphological structure. This study demonstrated the cytotoxic effect of reAO-801, which laid the foundation for further dissecting the mechanism of nematode infestation by A. oligospora.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (32060801). We thank the staff who provided the technical assistance for this study.

References

  1. Szewc M, Waal TD, Zintl A. Biological methods for the control of gastrointestinal nematodes. Vet J 2020; 268: 105602. https://doi.org/10.1016/j.tvjl.2020.105602
  2. Jacobson C, Larsen JW, Besier RB, Lloyd JB , Kahn LP. Diarrhoea associated with gastrointestinal parasites in grazing sheep. Vet Parasitol 2020; 282: 109139. https://doi.org/10.1016/j.vetpar.2020.109139
  3. Velan A, Hoda M. In-silico comparison of inhibition of wild and drug-resistant Haemonchus contortus β-tubulin isotype-1 by glycyrrhetinic acid, thymol and albendazole interactions. J Parasit Dis 2021; 45: 24-34. https://doi.org/10.1007/s12639-020-01274-w
  4. Doolotkeldieva T, Bobushova S, Muratbekova A, Schuster C, Leclerque A. Isolation, identification, and characterization of the nematophagous fungus Arthrobotrys oligospora from Kyrgyzstan. Acta Parasitol 2021; 66: 1349-1365. https://doi.org/10.1007/s11686-021-00404-5
  5. Yang Y, Yang EC, An ZQ, Liu XZ. Evolution of nematode-trapping cells of predatory fungi of the Orbiliaceae based on evidence from rRNA-encoding DNA and multiprotein sequences. Proc Nat Acad Sci USA 2007; 104: 8379-8384. https://doi.org/10.1073/pnas.0702770104
  6. Yang J, Wang L, Ji X, Feng Y, Li X, Zou C, Xu J, Ren Y, Mi Q, Wu J, Liu S, Liu Y, Huang X, Wang H, Niu X, Li J, Liang L, Luo Y, Ji K, Zhou W, Yu Z, Li G, Liu Y, Li L, Qiao M, Feng L, Zhang KQ. Genomic and proteomic analyses of the fungus Arthrobotrys oligospora provide insights into nematode-trap formation. PLoS Pathog 2011; 7: e1002179. https://doi.org/10.1371/journal.ppat.1002179
  7. Liang LM, Wu H, Liu ZH, Shen RF, Gao H, Yang JK, Zhang KQ. Proteomic and transcriptional analyses of Arthrobotrys oligospora cell wall related proteins reveal complexity of fungal virulence against nematodes. Appl Microbiol Biotechnol 2013; 97: 8683-8692. https://doi.org/10.1007/s00253-013-5178-1
  8. Yang JK, Yu Y, Li J, Zhu W, Geng ZY, Jiang DW, Wang YC, Zhang KQ. Characterization and functional analyses of the chitinaseencoding genes in the nematode-trapping fungus Arthrobotrys oligospora. Arch Microbiol 2013; 195: 453-462. https://doi.org/10.1007/s00203-013-0894-6
  9. Zhao HL, Qiao J, Meng QL, Gong SS, Chen C, Liu TL, Tian LL, Cai XP, Luo JX, Chen CF. Expression of serine proteinase P186 of Arthrobotrys oligospora and analysis of its nematode-degrading activity. Antonie Van Leeuwenhoek 2015; 108: 1485-1494. https://doi.org/10.1007/s10482-015-0595-z
  10. Wang JW, Meng QL, Qiao J, Wang WS, Chen SQ, Luo JX, Zhao CG, Chen CF. The recombinant serine protease XAoz1 of Arthrobotrys oligospora exhibits potent nematicidal activity against Caenorhabditis elegans and Haemonchus contortus. FEMS Microbiol Lett 2013; 344: 53-59. https://doi.org/10.1111/1574-6968.12154
  11. Andersson KM, Meerupati T, Levander F, Friman E, Ahren D, Tunlid A. Proteome of the nematode-trapping cells of the fungus Monacrosporium haptotylum. Appl Environ Microbiol 2013; 79: 4993-5004. https://doi.org/10.1128/AEM.01390-13
  12. Nordbring-Hertz B. Morphogenesis in the nematode-trapping fungus Arthrobotrys oligospora-an extensive plasticity of infection structures. Mycologist 2004; 18: 125-133. https://doi.org/10.1017/S0269915X04003052
  13. Zhong WQ, Chen Y, Gong SS, Qiao J, Meng QL, Zhang XX, Wang XF, Huang YF, Tian LL, Cai XP. Enzymological properties and nematode-degrading activity of recombinant chitinase ao379 of Arthrobotrys oligospora how to cite this article. Kafkas Univ Vet Fak Derg 2019; 25: 435-444. https://doi.org/10.9775/kvfd.2018.20603
  14. Mickael R, Fabrice G, Vern YL, Grasseau I, Kerboeuf D. Effects of cholesterol content on activity of P-glycoproteins and membrane physical state, and consequences for anthelmintic resistance in the nematode Haemonchus contortus. Parasite 2020; 27: 3. https://doi.org/10.1051/PARASITE/2019079
  15. Tikhonov VE, Lopez-Llorca LV, Salinas J, Jansson HB. Purification and characterization of chitinases from the nematophagous fungi Verticillium chlamydosporium and V. suchlasporium. Fungal Genet Biol 2002; 35: 67-78. https://doi.org/10.1006/fgbi.2001.1312
  16. Khan A, Williams KL, Hkm N. Effects of Paecilomyces lilacinus protease and chitinase on the eggshell structures and hatching of Meloidogyne javanica juveniles. Biol Control 2004; 31: 346-352. https://doi.org/10.1016/j.biocontrol.2004.07.011
  17. Nguyen VN, Oh IJ, Kim YJ, Kim YC, Park RD. Purification and characterization of chitinases from Paecilomyces variotii DG-3 parasitizing on Meloidogyne incognita eggs. J Ind Microbiol Biotechnol 2009; 36: 195-203. https://doi.org/10.1007/s10295-008-0485-8
  18. Berger LR, Reynolds DM. The chitinase system of a strain of Streptomyces griseus. Biochim Biophys Acta 1958; 29: 522-534. https://doi.org/10.1016/0006-3002(58)90008-8
  19. Larriba E, Jaime M, Carbonell-Caballero J, Conesa A, LopezLlorca LV. Sequencing and functional analysis of the genome of a nematode egg-parasitic fungus, Pochonia chlamydosporia. Fungal Genet Biol 2014; 65: 69-80. https://doi.org/10.1016/j.fgb.2014.02.002
  20. Meerupati T, Andersson KM, Friman E, Kumar D, Tunlid A, Ahren D, Richardson PM. Genomic mechanisms accounting for the adaptation to parasitism in nematode-trapping fungi. PLoS Genetics 2013; 9: e1003909. https://doi.org/10.1371/journal.pgen.1003909
  21. Honda S, Wakita S, Sugahara Y, Kawakita M, Oyama F, Sakaguchi M. Characterization of two Listeria innocua chitinases of different sizes that were expressed in Escherichia coli. Appl Microbiol Biotechnol 2016; 100: 8031-8041. https://doi.org/10.1007/s00253-016-7546-0
  22. Berini F, Presti I, Beltrametti F, Pedroli M, Varum KM, Pollegioni L, Sjoling S, Marinelli F. Production and characterization of a novel antifungal chitinase identified by functional screening of a suppressive-soil metagenome. Microb Cell Fact 2017; 16: 16. https: //doi.org/10.1186/s12934-017-0634-8
  23. Gan ZW, Yang JK, Tao N, Yu ZF, Zhang KQ. Cloning and expression analysis of a chitinase gene Crchi1 from the mycoparasitic fungus Clonostachys rosea (syn. Gliocladium roseum). J Microbiol 2007; 45: 422-430.
  24. Luong NN, Tien N, Huy NX, Tue NH, Man LQ, Sinh DD , Dang VT, Chi DT, Hoa PT, Loc NH. Expression of 42kDa chitinase of Trichoderma asperellum (Ta-CHI42) from a synthetic gene in Escherichia coli. FEMS Microbiol Lett 2021; 368: fnab110. https://doi.org/10.1093/femsle/fnab110
  25. Li H, Greene LH. Sequence and structural analysis of the chitinase insertion domain reveals two conserved motifs involved in chitin-binding. PLoS One 2010; 5: e8654. https://doi.org/10.1371/journal.pone.0008654
  26. Ju Y, Wang X, Guan T, Peng D, Li H. Versatile glycoside hydrolase family 18 chitinases for fungi ingestion and reproduction in the pinewood nematode Bursaphelenchus xylophilus. Int J Parasitol 2016; 46: 819-828. https://doi.org/10.1016/j.ijpara.2016.08.001
  27. Hollak CE, Weely SV, Oers MH, Aerts J. Marked elevation of plasma chitotriosidase activity. A novel hallmark of Gaucher disease. Journal of Clinical Investigation 1994; 93: 1288-1292. https://doi.org/10.1172/JCI117084
  28. Olson SK, Greenan G, Desai A, Muller-Reichert T, Oegema K. Hierarchical assembly of the eggshell and permeability barrier in C. elegans. J Clin Invest 2012; 198: 731. https://doi.org/10.1083/JCB.201206008
  29. Zhang Y, Foster JM, Nelson LS, Ma D, Carlow CK. The chitin synthase genes chs-1 and chs-2 are essential for C. elegans development and responsible for chitin deposition in the eggshell and pharynx, respectively. Dev Biol 2005; 285: 330-339. https://doi.org/10.1016/j.ydbio.2005.06.037
  30. Dijksterhuis J, Veenhuis M, Harder W. Ultrastructural study of adhesion and initial stages of infection of nematodes by conidia of Drechmeria coniospora. Mycol Res 1990; 94: 1-8. https://doi.org/10.1016/S0953-7562(09)81257-4
  31. Mercer CF, Greenwood DR, Grant JL. Effect of plant and microbial chitinases on the eggs and juveniles of Meloidogyne hapla Chitwood (Nematoda: Tylenchida). Nematologica 1992; 38: 227-236. https://doi.org/10.1163/187529292X00199