DOI QR코드

DOI QR Code

Association of selected gene polymorphisms with thermotolerance traits in cattle - A review

  • Received : 2022.02.09
  • Accepted : 2022.05.18
  • Published : 2022.11.01

Abstract

Thermal stress due to extreme changes in the thermal environment is a critical issue in cattle production. Many previous findings have shown a decrease in feed intake, milk yield, growth rate, and reproductive efficiency of cattle when subjected to thermal stress. Therefore, selecting thermo-tolerant animals is the primary goal of the efficiency of breeding programs to reduce those adverse impacts. The recent advances in molecular genetics have provided significant breeding advantages that allow the identification of molecular markers in both beef and dairy cattle breeding, including marker-assisted selection (MAS) as a tool in selecting superior thermo-tolerant animals. Single-nucleotide polymorphisms (SNPs), which can be detected by DNA sequencing, are desirable DNA markers for MAS due to their abundance in the genome's coding and non-coding regions. Many SNPs in some genes (e.g., HSP70, HSP90, HSF1, EIF2AK4, HSBP1, HSPB8, HSPB7, MYO1A, and ATP1A1) in various breeds of cattle have been analyzed to play key roles in many cellular activities during thermal stress and protecting cells against stress, making them potential candidate genes for molecular markers of thermotolerance. This review highlights the associations of SNPs within these genes with thermotolerance traits (e.g., blood biochemistry and physiological responses) and suggests their potential use as MAS in thermotolerant cattle breeding.

Keywords

References

  1. Chang-Fung-Martel J, Harrison MT, Brown JN, et al. Negative relationship between dry matter intake and the temperaturehumidity index with increasing heat stress in cattle: a global meta-analysis. Int J Biometeorol 2021;65:2099-109. https://doi.org/10.1007/s00484-021-02167-0
  2. Corazzin M, Sacca E, Lippe G, et al. Effect of heat stress on dairy cow performance and on expression of protein metabolism genes in mammary cells. Animals 2020;10:2124. https://doi.org/10.3390/ani10112124
  3. Summer A, Lora I, Formaggioni P, Gottardo F. Impact of heat stress on milk and meat production. Anim Front 2019;9:39-46. https://doi.org/10.1093/af/vfy026
  4. Liu J, Li L, Chen X, Lu Y, Wang D. Effects of heat stress on body temperature, milk production, and reproduction in dairy cows: a novel idea for monitoring and evaluation of heat stress - A review. Asian-Australas J Anim Sci 2019;32: 1332-9. https://doi.org/10.5713/ajas.18.0743
  5. Monteiro APA, Tao S, Thompson IMT, Dahl GE. In utero heat stress decreases calf survival and performance through the first lactation. J Dairy Sci 2016;99:8443-50. https://doi.org/10.3168/jds.2016-11072
  6. Laporta J, Fabris TF, Skibiel AL, et al. In utero exposure to heat stress during late gestation has prolonged effects on the activity patterns and growth of dairy calves. J Dairy Sci 2017; 100:2976-84. https://doi.org/10.3168/jds.2016-11993
  7. Boonkum W, Misztal I, Duangjinda M, Pattarajinda V, Tumwasorn S, Buaban S. Short communication: genetic effects of heat stress on days open for Thai Holstein crossbreds. J Dairy Sci 2011;94:1592-6. https://doi.org/10.3168/jds.2010-3491
  8. El-Tarabany MS, El-Bayoumi KM. Reproductive performance of backcross Holstein × Brown Swiss and their Holstein contemporaries under subtropical environmental conditions. Theriogenology 2015;83:444-8. https://doi.org/10.1016/j.theriogenology.2014.10.010
  9. St-Pierre NR, Cobanov B, Schnitkey G. Economic losses from heat stress by US livestock industries. J Dairy Sci 2003; 86:E52-E77. https://doi.org/10.3168/jds.S0022-0302(03)74040-5
  10. Johnson JS. Heat stress: Impact on livestock well-being and productivity and mitigation strategies to alleviate the negative effects. Anim Prod Sci 2018;58:1404-13. https://doi.org/10.1071/AN17725
  11. Fournel S, Ouellet V, Charbonneau E. Practices for alleviating heat stress of dairy cows in humid continental climates: a literature review. Animals 2017;7:37. https://doi.org/10.3390/ani7050037
  12. Augenstein SM, Harrison MA, Klopatek SC, Oltjen JW. Heat stress alleviation and dynamic temperature measurement for growing beef cattle. Transl Anim Sci 2020;4:S178-81. https://doi.org/10.1093/tas/txaa144
  13. Ansari-Mahyari S, Ojali MR, Forutan M, Riasi A, Brito LF. Investigating the genetic architecture of conception and nonreturn rates in Holstein cattle under heat stress conditions. Trop Anim Health Prod 2019;51:1847-53. https://doi.org/10.1007/s11250-019-01875-5
  14. Carabano MJ. The challenge of genetic selection for heat tolerance: the dairy cattle example. Adv Anim Biosci 2016;7:218-222. https://doi.org/10.1017/s2040470016000169
  15. Santana ML, Bignardi AB, Pereira RJ, Stefani G, El Faro L. Genetics of heat tolerance for milk yield and quality in Holsteins. Animal 2017;11:4-14. https://doi.org/10.1017/S1751731116001725
  16. Beuzen ND, Stear MJ, Chang KC. Molecular markers and their use in animal breeding. Vet J 2000;160:42-52. https://doi.org/10.1053/tvjl.2000.0468
  17. Abbas Z, Hu L, Fang H, et al. Association analysis of polymorphisms in the 5' flanking region of the hsp70 gene with blood biochemical parameters of lactating holstein cows under heat and cold stress. Animals 2020;10:2016. https://doi.org/10.3390/ani10112016
  18. Onasanya GO, Msalya GM, Thiruvenkadan AK, et al. Single nucleotide polymorphisms at heat shock protein 90 gene and their association with thermo-tolerance potential in selected indigenous Nigerian cattle. Trop Anim Health Prod 2020;52: 1961-70. https://doi.org/10.1007/s11250-020-02222-9
  19. Rong Y, Zeng M, Guan X, et al. Association of HSF1 genetic variation with heat tolerance in chinese cattle. Animals 2019;9:1027. https://doi.org/10.3390/ani9121027
  20. Wang K, Cao Y, Rong Y, et al. A novel SNP in EIF2AK4 gene is associated with thermal tolerance traits in Chinese cattle. Animals 2019;9:375. https://doi.org/10.3390/ani9060375
  21. Wang Y, Huang J, Xia P, et al. Genetic variations of HSBP1 gene and its effect on thermal performance traits in Chinese Holstein cattle. Mol Biol Rep 2013;40:3877-82. https://doi.org/10.1007/s11033-012-1977-1
  22. Verma N, Gupta ID, Verma A, et al. Novel SNPs in HSPB8 gene and their association with heat tolerance traits in Sahiwal indigenous cattle. Trop Anim Health Prod 2016;48:175-80. https://doi.org/10.1007/s11250-015-0938-9
  23. Zeng L, Cao Y, Wu Z, et al. A missense mutation of the HSPB7 gene associated with heat tolerance in Chinese indicine cattle. Animals 2019;9:554. https://doi.org/10.3390/ani9080554
  24. Jia P, Cai C, Qu K, et al. Four novel SNPs of MYO1A gene associated with heat-tolerance in Chinese cattle. Animals 2019;9:964. https://doi.org/10.3390/ani9110964
  25. Liu YX, Zhou X, Li DQ, Cui QW, Wang GL. Association of ATP1A1 gene polymorphism with heat tolerance traits in dairy cattle. Genet Mol Res 2010;9:891-6. https://doi.org/10.4238/vol9-2gmr769
  26. Garbuz DG. Regulation of heat shock gene expression in response to stress. Mol Biol 2017;51:352-67. https://doi.org/10.1134/S0026893317020108
  27. Kumar R, Gupta ID, Verma A, et al. Novel SNP identification in exon 3 of HSP90AA1 gene and their association with heat tolerance traits in Karan Fries (Bos taurus × Bos indicus) cows under tropical climatic condition. Trop Anim Health Prod 2016;48:735-40. https://doi.org/10.1007/s11250-016-1016-7
  28. Koltes JE, Koltes DA, Mote BE, Tucker J, Hubbell III DS. Automated collection of heat stress data in livestock: new technologies and opportunities. Transl Anim Sci 2018;2:319-23. https://doi.org/10.1093/tas/txy061
  29. Deb R, Fonseca VDFC, Payan-Carreira R, Sejian V, Lees AM. Editorial: Genetic basis of thermoregulation in livestock. Front Vet Sci 2022;9:839612. https://doi.org/10.3389/fvets.2022.839612
  30. Carabano MJ, Ramon M, Menendez-Buxadera A, Molina A, Diaz C. Selecting for heat tolerance. Anim Front 2019;9:62-8. https://doi.org/10.1093/af/vfy033
  31. Dikmen S, Cole JB, Null DJ, Hansen PJ. Heritability of rectal temperature and genetic correlations with production and reproduction traits in dairy cattle. J Dairy Sci 2012;95:3401-5. https://doi.org/10.3168/jds.2011-4306
  32. Nguyen TTT, Bowman PJ, Haile-Mariam M, Pryce JE, Hayes BJ. Genomic selection for tolerance to heat stress in Australian dairy cattle. J Dairy Sci 2016;99:2849-62. https://doi.org/10.3168/jds.2015-9685
  33. Feder ME, Hofmann GE. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 1999;61:243-82. https://doi.org/10.1146/annurev.physiol.61.1.243
  34. Chirico WJ, Waters MG, Blobel G. 70K heat shock related proteins stimulate protein translocation into microsomes. Nature 1988;332:805-10. https://doi.org/10.1038/332805a0
  35. Hassan FU, Nawaz A, Rehman MS, Alid MA, Dilshad SMR, Yang C. Prospects of HSP70 as a genetic marker for thermotolerance and immuno-modulation in animals under climate change scenario. Anim Nutr (Zhongguo Xu Mu Shou Yi Xue Hui) 2019;5:340-50. https://doi.org/10.1016/j.aninu.2019.06.005
  36. Kishore A, Sodhi M, Kumari P, et al. Peripheral blood mononuclear cells: a potential cellular system to understand differential heat shock response across native cattle (Bos indicus), exotic cattle (Bos taurus), and riverine buffaloes (Bubalus bubalis) of India. Cell Stress Chaperones 2014;19:613-21. https://doi.org/10.1007/s12192-013-0486-z
  37. Gade N, Mahapatra RK, Sonawane A, Singh VK, Doreswamy R, Saini M. Molecular characterization of heat shock protein 70-1 gene of goat (Capra hircus). Mol Biol Int 2010;2010:108429. https://doi.org/10.4061/2010/108429
  38. Gallagher DSJ, Grosz MD, Womack JE, Skow LC. Chromosomal localization of HSP70 genes in cattle. Mamm Genome 1993;4:388-90. https://doi.org/10.1007/BF00360590
  39. Dangi SS, Gupta M, Maurya D, et al. Expression profile of HSP genes during different seasons in goats (Capra hircus). Trop Anim Health Prod 2012;44:1905-12. https://doi.org/10.1007/s11250-012-0155-8
  40. Kregel KC. Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol 2002;92:2177-86. https://doi.org/10.1152/japplphysiol.01267.2001
  41. Pryce JE, Nguyen TTT, Cheruiyot EK, Marett L, Garner JB, Haile-Mariam M. Impact of hot weather on animal performance and genetic strategies to minimise the effect. Anim Prod Sci 2022;62:726-35. https://doi.org/10.1071/AN21259
  42. Xu Q, Wang YC, Liu R, et al. Differential gene expression in the peripheral blood of Chinese Sanhe cattle exposed to severe cold stress. Genet Mol Res 2017;16:gmr16029593. https://doi.org/10.4238/gmr16029593
  43. Hu L, Ma Y, Liu L, et al. Detection of functional polymorphisms in the hsp70 gene and association with cold stress response in Inner-Mongolia Sanhe cattle. Cell Stress Chaperones 2019; 24:409-18. https://doi.org/10.1007/s12192-019-00973-5
  44. Bhat S, Kumar P, Kashyap N, et al. Effect of heat shock protein 70 polymorphism on thermotolerance in Tharparkar cattle. Vet World 2016;9:113-7. https://doi.org/10.14202/vetworld.2016.113-117
  45. Onasanya GO, Msalya GM, Thiruvenkadan AK, et al. Heterozygous single-nucleotide polymorphism genotypes at heat shock protein 70 gene potentially influence thermo-tolerance among four Zebu breeds of Nigeria. Front Genet 2021;12:642213. https://doi.org/10.3389/fgene.2021.642213
  46. Prihandini PW, Primasari A, Aryogi A, Luthfi M, Hariyono DNH. Genetic polymorphisms of the 5' untranslated regions of the HSP70 gene in Indonesian cattle populations. Vet World 2022;15:168-72. https://doi.org/10.14202/vetworld.2022.168-172
  47. Starkey L, Looper M, Banks A, Reiter S, Rosenkrans C. Identification of polymorphisms in the promoter region of the bovine heat shock protein gene and associations with bull calf weaning weight. J Anim Sci 2007;85(Sppl 2):44.
  48. Rosenkrans CJ, Banks A, Reiter S, Looper M. Calving traits of crossbred Brahman cows are associated with Heat Shock Protein 70 genetic polymorphisms. Anim Reprod Sci 2010; 119:178-82. https://doi.org/10.1016/j.anireprosci.2010.02.005
  49. Mkize LS, Zishiri OT. Novel single nucleotide polymorphisms in the heat shock protein 70.1 gene in South African Nguni crossbred cattle. Trop Anim Health Prod 2020;52:893-901. https://doi.org/10.1007/s11250-019-02088-6
  50. Basirico L, Morera P, Primi V, Lacetera N, Nardone A, Bernabucci U. Cellular thermotolerance is associated with heat shock protein 70.1 genetic polymorphisms in Holstein lactating cows. Cell Stress Chaperones 2011;16:441-8. https://doi.org/10.1007/s12192-011-0257-7
  51. Deb R, Sajjanar B, Singh U, et al. Promoter variants at AP2 box region of Hsp70.1 affect thermal stress response and milk production traits in Frieswal cross bred cattle. Gene 2013;532:230-5. https://doi.org/10.1016/j.gene.2013.09.037
  52. Oner Y, Keskin A, Ustuner H, Soysal D, Karakas V. Genetic diversity of the 3' and 5' untranslated regions of the HSP70.1 gene between native Turkish and Holstein Friesian cattle breeds. S Afr J Anim Sci 2017;47:424-39. https://doi.org/10.4314/sajas.v47i2
  53. Badri T, Alsiddig M, Lian L, Cai Y, Wang G. Single nucleotide polymorphisms in HSP70-1 gene associated with cellular heat tolerance in Chinese Holstein cows. Anim Gene 2021; 20:200114. https://doi.org/10.1016/j.angen.2021.200114
  54. Pratt WB, Toft DO. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood) 2003;228:111-33. https://doi.org/10.1177/153537020322800201
  55. Genest O, Wickner S, Doyle SM. Hsp90 and Hsp70 chaperones: Collaborators in protein remodeling. J Biol Chem 2019;294:2109-20. https://doi.org/10.1074/jbc.REV118.002806
  56. Mosser DD, Caron AW, Bourget L, Denis-Larose C, Massie B. Role of the human heat shock protein hsp70 in protection against stress-induced apoptosis. Mol Cell Biol 1997;17:5317-27. https://doi.org/10.1128/MCB.17.9.5317
  57. Wang P, Wang Y-F, Wang H, et al. HSP90 expression correlation with the freezing resistance of bull sperm. Zygote 2014;22:239-45. https://doi.org/10.1017/S096719941300004X
  58. Zhang X-G, Hu S, Han C, et al. Association of heat shock protein 90 with motility of post-thawed sperm in bulls. Cryobiology 2015;70:164-9. https://doi.org/10.1016/j.cryobiol.2014.12.010
  59. Chen B, Zhong D, Monteiro A. Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms. BMC Genomics 2006;7:156. https://doi.org/10.1186/1471-2164-7-156
  60. Csermely P, Schnaider T, Soti C, Prohaszka Z, Nardai G. The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther 1998;79:129-68. https://doi.org/10.1016/s0163-7258(98)00013-8
  61. Charoensook R, Gatphayak K, Sharifi AR, et al. Polymorphisms in the bovine HSP90AB1 gene are associated with heat tolerance in Thai indigenous cattle. Trop Anim Health Prod 2012; 44:921-8. https://doi.org/10.1007/s11250-011-9989-8
  62. Sajjanar B, Deb R, Singh U, et al. Identification of SNP in HSP90AB1 and its association with the relative thermotolerance and milk production traits in Indian dairy cattle. Anim Biotechnol 2015;26:45-50. https://doi.org/10.1080/10495398.2014.882846
  63. Badri TM, Chen KL, Alsiddig MA, Li L, Cai Y, Wang GL. Genetic polymorphism in Hsp90AA1 gene is associated with the thermotolerance in Chinese Holstein cows. Cell Stress Chaperones 2018;23:639-51. https://doi.org/10.1007/s12192-017-0873-y
  64. Gill JK, Arora JS, Sunil Kumar BV, Mukhopadhyay CS, Kaur S, Kashyap N. Cellular thermotolerance is independent of HSF 1 expression in zebu and crossbred non-lactating cattle. Int J Biometeorol 2017;61:1687-93. https://doi.org/10.1007/s00484-017-1350-0
  65. Carpenter RL, Gokmen-Polar Y. HSF1 as a cancer biomarker and therapeutic target. Curr Cancer Drug Targets 2019;19: 515-24. https://doi.org/10.2174/1568009618666181018162117
  66. Ritossa F. A new puffing pattern induced by temperature shock and DNP in drosophila. Experientia 1962;18:571-3. https://doi.org/10.1007/BF02172188
  67. Lindquist S. The heat-shock response. Annu Rev Biochem 1986;55:1151-91. https://doi.org/10.1146/annurev.bi.55.070186.005443
  68. Sistonen L, Sarge KD, Morimoto RI. Human heat shock factors 1 and 2 are differentially activated and can synergistically induce hsp70 gene transcription. Mol Cell Biol 1994;14:2087-99. https://doi.org/10.1128/mcb.14.3.2087-2099.1994
  69. Edea Z, Dadi H, Dessie T, et al. Genome-wide scan reveals divergent selection among taurine and zebu cattle populations from different regions. Anim Genet 2018;49:550-63. https://doi.org/10.1111/age.12724
  70. de Fatima Bretanha Rocha R, Baena MM, de Cassia Estopa A, et al. Differential expression of HSF1 and HSPA6 genes and physiological responses in Angus and Simmental cattle breeds. J Therm Biol 2019;84:92-8. https://doi.org/10.1016/j.jtherbio.2019.06.002
  71. Li Q-L, Ju ZH, Huang JM, et al. Two novel SNPs in HSF1 gene are associated with thermal tolerance traits in Chinese Holstein cattle. DNA Cell Biol 2011;30:247-54. https://doi.org/10.1089/dna.2010.1133
  72. Baena MM, Tizioto PC, Meirelles SLC, Regitano LC de A. HSF1 and HSPA6 as functional candidate genes associated with heat tolerance in Angus cattle. Rev Bras Zootec 2018;47:e20160390. https://doi.org/10.1590/rbz4720160390
  73. Sharma P, Sharma A, Sodhi M, et al. Characterizing binding sites of heat responsive microRNAs and their expression pattern in heat stressed PBMCs of native cattle, exotic cattle and riverine buffaloes. Mol Biol Rep 2019;46:6513-24. https://doi.org/10.1007/s11033-019-05097-8
  74. Li QL, Zhang ZF, Xia P, et al. A SNP in the 3'-UTR of HSF1 in dairy cattle affects binding of target bta-miR-484. Genet Mol Res 2015;14:12746-55. https://doi.org/10.4238/2015.October.19.18
  75. Morimoto H, Baba R. Cellular stress and eIF-2alpha kinase. J UOEH 2012;34:331-8. https://doi.org/10.7888/juoeh.34.331
  76. Krishna KH, Kumar MS. Molecular evolution and functional divergence of eukaryotic translation initiation factor 2-alpha kinases. PLoS One 2018;13:e0194335. https://doi.org/10.1371/journal.pone.0194335
  77. Harding HP, Novoa I, Zhang Y, et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 2000;6:1099-108. https://doi.org/10.1016/s1097-2765(00)00108-8
  78. Roobol A, Roobol J, Bastide A, et al. p58IPK is an inhibitor of the eIF2α kinase GCN2 and its localization and expression underpin protein synthesis and ER processing capacity. Biochem J 2015;465:213-25. https://doi.org/10.1042/BJ20140852
  79. Taniuchi S, Miyake M, Tsugawa K, Oyadomari M, Oyadomari S. Integrated stress response of vertebrates is regulated by four eIF2α kinases. Sci Rep 2016;6:32886. https://doi.org/10.1038/srep32886
  80. Donnelly N, Gorman AM, Gupta S, Samali A. The eIF2α kinases: their structures and functions. Cell Mol Life Sci 2013;70:3493-511. https://doi.org/10.1007/s00018-012-1252-6
  81. Houston BJ, Nixon B, Martin JH, et al. Heat exposure induces oxidative stress and DNA damage in the male germ line. Biol Reprod 2018;98:593-606. https://doi.org/10.1093/biolre/ioy009
  82. Liang L, Ma G, Chen K, et al. EIF2AK4 mutation in pulmonary veno-occlusive disease: A case report and review of the literature. Medicine (Baltimore) 2016;95:e5030. https://doi.org/10.1097/MD.0000000000005030
  83. Deng J, Harding HP, Raught B, et al. Activation of GCN2 in UV-irradiated cells inhibits translation. Curr Biol 2002;12: 1279-86. https://doi.org/10.1016/s0960-9822(02)01037-0
  84. Jiang HY, Wek RC. GCN2 phosphorylation of eIF2alpha activates NF-kappaB in response to UV irradiation. Biochem J 2005;385:371-380. https://doi.org/10.1042/BJ20041164
  85. Masson GR. Towards a model of GCN2 activation. Biochem Soc Trans 2019;47:1481-8. https://doi.org/10.1042/BST20190331
  86. Satyal SH, Chen D, Fox SG, Kramer JM, Morimoto RI. Negative regulation of the heat shock transcriptional response by HSBP1. Genes Dev 1998;12:1962-74. https://doi.org/10.1101/gad.12.13.1962
  87. Eroglu B, Min JN, Zhang Y, et al. An essential role for heat shock transcription factor binding protein 1 (HSBP1) during early embryonic development. Dev Biol 2014;386:448-60. https://doi.org/10.1016/j.ydbio.2013.12.038
  88. Liu X, Xu L, Liu Y, et al. Crystal structure of the hexamer of human heat shock factor binding protein 1. Proteins 2009;75: 1-11. https://doi.org/10.1002/prot.22216
  89. Chowdary TK, Raman B, Ramakrishna T, Rao CM. Mammalian Hsp22 is a heat-inducible small heat-shock protein with chaperone-like activity. Biochem J 2004;381:379-87. https://doi.org/10.1042/BJ20031958
  90. Dubinska-Magiera M, Niedbalska-Tarnowska J, MigockaPatrzalek M, Posyniak E, Daczewska M. Characterization of Hspb8 in Zebrafish. Cells 2020;9:1562. https://doi.org/10.3390/cells9061562
  91. Chowdary TK, Raman B, Ramakrishna T, Rao CM. Interaction of mammalian Hsp22 with lipid membranes. Biochem J 2007; 401:437-45. https://doi.org/10.1042/BJ20061046
  92. Shemetov AA, Seit-Nebi AS, Gusev NB. Structure, properties, and functions of the human small heat-shock protein HSP22 (HspB8, H11, E2IG1): a critical review. J Neurosci Res 2008; 86:264-9. https://doi.org/10.1002/jnr.21441
  93. Kuroyanagi G, Sakai G, Otsuka T, et al. HSP22 (HSPB8) positively regulates PGF2α-induced synthesis of interleukin-6 and vascular endothelial growth factor in osteoblasts. J Orthop Surg Res 2021;16:72. https://doi.org/10.1186/s13018-021-02209-8
  94. Fan H, Ding R, Liu W, et al. Heat shock protein 22 modulates NRF1/TFAM-dependent mitochondrial biogenesis and DRP1-sparked mitochondrial apoptosis through AMPKPGC1α signaling pathway to alleviate the early brain injury of subarachnoid hemorrhage in rats. Redox Biol 2021;40: 101856. https://doi.org/10.1016/j.redox.2021.101856
  95. Vos MJ, Kanon B, Kampinga HH. HSPB7 is a SC35 speckle resident small heat shock protein. Biochim Biophys Acta Mol Cell Res 2009;1793:1343-53. https://doi.org/10.1016/j.bbamcr.2009.05.005
  96. Ke L, Meijering RAM, Hoogstra-Berends F, et al. HSPB1, HSPB6, HSPB7 and HSPB8 protect against RhoA GTPaseinduced remodeling in tachypaced atrial myocytes. PLoS One 2011;6:e20395. https://doi.org/10.1371/journal.pone.0020395
  97. Krief S, Faivre JF, Robert P, et al. Identification and characterization of cvHsp. A novel human small stress protein selectively expressed in cardiovascular and insulin-sensitive tissues. J Biol Chem 1999;274:36592-600. https://doi.org/10.1074/jbc.274.51.36592
  98. Lin W, Yang Z, Lu Y, Zhao X. Refined purification of large amounts of rat cvHsp/HspB7 and partial biological characterization in vitro. Protein Pept Lett 2014;21:503-10. https://doi.org/10.2174/092986652105140218121109
  99. Sun X, Li X, Jia H, et al. Effect of heat-shock protein B7 on oxidative stress in adipocytes from preruminant calves. J Dairy Sci 2019;102:5673-85. https://doi.org/10.3168/jds.2018-15726
  100. Jin C, Shuai T, Tang Z. HSPB7 regulates osteogenic differentiation of human adipose derived stem cells via ERK signaling pathway. Stem Cell Res Ther 2020;11:450. https://doi.org/10.1186/s13287-020-01965-4
  101. Anzures-Olvera F, Veliz FG, de Santiago A, et al. The impact of hair coat color on physiological variables, reproductive performance and milk yield of Holstein cows in a hot environment. J Therm Biol 2019;81:82-8. https://doi.org/10.1016/j.jtherbio.2019.02.020
  102. Katiyatiya CLF, Muchenje V. Hair coat characteristics and thermophysiological stress response of Nguni and Boran cows raised under hot environmental conditions. Int J Biometeorol 2017;61:2183-94. https://doi.org/10.1007/s00484-017-1424-z
  103. Hayden SM, Wolenski JS, Mooseker MS. Binding of brush border myosin I to phospholipid vesicles. J Cell Biol 1990;111:443-51. https://doi.org/10.1083/jcb.111.2.443
  104. Berg JS, Powell BC, Cheney RE. A millennial myosin census. Mol Biol Cell 2001;12:780-94. https://doi.org/10.1091/mbc.12.4.780
  105. Munson S, Wang Y, Chang W, Bikle DD. Myosin 1a regulates osteoblast differentiation independent of intestinal calcium transport. J Endocr Soc 2019;3:1993-2011. https://doi.org/10.1210/js.2019-00171
  106. Tyska MJ, Nambiar R. Myosin-1a: A motor for microvillar membrane movement and mechanics. Commun Integr Biol 2010;3:64-6. https://doi.org/10.4161/cib.3.1.10141
  107. McConnell RE, Tyska MJ. Myosin-1a powers the sliding of apical membrane along microvillar actin bundles. J Cell Biol 2007;177:671-81. https://doi.org/10.1083/jcb.200701144
  108. Nambiar R, McConnell RE, Tyska MJ. Control of cell membrane tension by myosin-I. Proc Natl Acad Sci USA 2009; 106:11972-7. https://doi.org/10.1073/pnas.0901641106
  109. Cao Y, Jia P, Wu Z, et al. A novel SNP of MYO1A gene associated with heat-tolerance in Chinese cattle. Anim Biotechnol 2020 Nov 4 [Epub]. https://doi.org/10.1080/10495398.2020.1837147
  110. Liu Y, Li D, Li H, Zhou X, Wang G. A novel SNP of the ATP1A1 gene is associated with heat tolerance traits in dairy cows. Mol Biol Rep 2011;38:83-8. https://doi.org/10.1007/s11033-010-0080-8
  111. Das R, Gupta I, Verma A, et al. Genetic polymorphisms in ATP1A1 gene and their association with heat tolerance in Jersey crossbred cows. India J Dairy Sci 2015;68:50-4.
  112. Kashyap N, Kumar P, Deshmukh B, et al. Association of ATP1A1 gene polymorphism with thermotolerance in Tharparkar and Vrindavani cattle. Vet World 2015;8:892-7. https://doi.org/10.14202/vetworld.2015.892-897
  113. Zimin AV, Delcher AL, Florea L, et al. A whole-genome assembly of the domestic cow, Bos taurus. Genome Biol 2009;10:R42. https://doi.org/10.1186/gb-2009-10-4-r42
  114. Fujii N, Kenny GP, Amano T, et al. Na(+)-K(+)-ATPase plays a major role in mediating cutaneous thermal hyperemia achieved by local skin heating to 39°C. J Appl Physiol 2021; 131:1408-16. https://doi.org/10.1152/japplphysiol.00073.2021
  115. Vague P, Dufayet D, Coste T, Moriscot C, Jannot MF, Raccah D. Association of diabetic neuropathy with Na/K ATPase gene polymorphism. Diabetologia 1997;40:506-11. https://doi.org/10.1007/s001250050708
  116. Rajamanickam GD, Kastelic JP, Thundathil JC. Na/K-ATPase regulates bovine sperm capacitation through raft- and nonraft-mediated signaling mechanisms. Mol Reprod Dev 2017; 84:1168-82. https://doi.org/10.1002/mrd.22879
  117. Blanco G. Na,K-ATPase subunit heterogeneity as a mechanism for tissue-specific ion regulation. Semin Nephrol 2005;25: 292-303. https://doi.org/10.1016/j.semnephrol.2005.03.004
  118. Elayadeth-Meethal M, Thazhathu Veettil A, Asaf M, et al. Comparative expression profiling and sequence characterization of ATP1A1 gene associated with heat tolerance in tropically adapted cattle. Animals 2021;11:2368. https://doi.org/10.3390/ani11082368
  119. Imran S, Khan MS, Hassan FU, Qureshi ZI. Genetic characterization of cholistani breed of cattle for atp1a1 gene and its association to heat tolerance traits. Pakistan J Agric Sci 2021;58:229-34. https://doi.org/10.21162/PAKJAS/21.11
  120. Barendse W, Reverter A, Bunch RJ, et al. A validated wholegenome association study of efficient food conversion in cattle. Genetics 2007;176:1893-905. https://doi.org/10.1534/genetics.107.072637
  121. Garner JB, Douglas ML, Williams SRO, et al. Genomic Selection improves heat tolerance in dairy cattle. Sci Rep 2016;6:34114. https://doi.org/10.1038/srep34114
  122. Zhou L, Ding X, Zhang Q, Wang Y, Lund MS, Su G. Consistency of linkage disequilibrium between Chinese and Nordic Holsteins and genomic prediction for Chinese Holsteins using a joint reference population. Genet Sel Evol 2013;45:7. https://doi.org/10.1186/1297-9686-45-7
  123. Lalrengpuii S, ID Gupta, Verma A, R Das, Chaudhari MV. Association of single nucleotide polymorphism of Hsp90ab1 gene with thermotolerance and milk yield in Sahiwal cows. African J Biochem Res 2015;9:99-103. https://doi.org/10.5897/ajbr2015.0837