Acknowledgement
The authors appreciate all the help from our colleagues and collaborators.
References
- Magdelaine P, Spiess MP, Valceschini E. Poultry meat consumption trends in europe. World Poult Sci J 2008;64:53-6. https://doi.org/10.1017/S0043933907001717
- Kearney J. Food consumption trends and drivers. Philos Trans R Soc Lond B Biol Sci 2010;365:2793-807. https://doi.org/10.1098/rstb.2010.0149
- Godfray HCJ, Beddington JR, Crute IR, et al. Food security: the challenge of feeding 9 billion people. Science 2010;327:812-8. https://doi.org/10.1126/science.1185383
- Toomer OT, Livingston ML, Wall B, et al. Meat quality and sensory attributes of meat produced from broiler chickens fed a high oleic peanut diet. Poult Sci 2019;98:5188-97. https://doi.org/10.3382/ps/pez258
- Kuttappan VA, Hargis BM, Owens CM. White striping and woody breast myopathies in the modern poultry industry: a review. Poult Sci 2016;95:2724-33. https://doi.org/10.3382/ps/pew216
- Zhang J, Hu HH, Mu T, et al. Correlation analysis between AK1 mRNA expression and inosine monophosphate deposition in Jingyuan chickens. Animals 2020;10:439. https://doi.org/10.3390/ani10030439
- Jung S, Bae YS, Kim HJ, et al. Carnosine, anserine, creatine, and inosine 5'-monophosphate contents in breast and thigh meats from 5 lines of Korean native chicken. Poult Sci 2013; 92:3275-82. https://doi.org/10.3382/ps.2013-03441
- Zhang T, Lu HZ, Wang L, Yin MC, Yang LK. Specific expression pattern of IMP metabolism related-genes in chicken muscle between cage and free range conditions. Plos One 2018;13:e0201736. https://doi.org/10.1371/journal.pone.0201736
- Zhou XJ, Zhu NH, Zhang RJ. Effect of breed, age and feeding method on inosinic acid and intramuscular fat content of chicken meat. Chin J Anim Nutr 2010;22:1251-6.
- Sun YJ, Tian HS, Zhao GP, et al. Influence of different feeding methods on muscle flavor substances of Beijing You chicken. Chin Anim Husband Veteri Medic 2014;41:89-94.
- Chen YB. Study on the relationship between the change rule of IMP content and correlation of related. Shaanxi, China: Shaanxi University of Technology; 2021. pp. 53-6.
- Dalgaard LB, Rasmussen MK, Bertram HC, et al. Classification of wooden breast myopathy in chicken pectoralis major by a standardised method and association with conventional quality assessments. Int J Food Sci Technol 2018;53:174452. https://doi.org/10.1111/ijfs.13759
- Chen L, Zhang YH, Wang S, Zhang Y, Huang T, Cai YD. Prediction and analysis of essential genes using the enrichments of gene ontology and KEGG pathways. Plos One 2017;12:e0184129. https://doi.org/10.1371/journal.pone.0184129
- Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: proteinprotein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019;47:D607-13. https://doi. org/10.1093/nar/gky1131
- Jassal B, Matthews L, Viteri G, et al. The reactome pathway knowledgebase. Nucleic Acids Res 2020;48:D498-503. https://doi.org/10.1093/nar/gkz1031
- Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001;25:402-8. https://doi.org/10. 1006/meth.2001.1262 https://doi.org/10.1006/meth.2001.1262
- Yan JS, Liu PF, Xu LM, et al. Effects of exogenous inosine monophosphate on growth performance, flavor compounds, enzyme activity, and gene expression of muscle tissues in chicken. Poult Sci 2018;97:1229-37. https://doi.org/10.3382/ps/pex415
- Kucukozet AO, Uslu MK. Cooking loss, tenderness, and sensory evaluation of chicken meat roasted after wrapping with edible films. Food Sci Technol Int 2018;24:576-84. https://doi.org/10.1177/1082013218776540
- Musundire MT, Halimani TE, Chimonyo M. Physical and chemical properties of meat from scavenging chickens and helmeted guinea fowls in response to age and sex. Br Poult Sci 2017;58:390-6. https://doi.org/10.1080/00071668.2017.1313961
- Liu Y, Tomg HQ, Liu LX, et al. Correlation between the content of inosine acid and meat quality of adult Daweishan mini chicken. Chin Poult 2017;39:11-6. https://doi.org/10.16372/j.issn.1004-6364.2017.19.003
- Xiao J, Hua GH, Li H, et al. Study on slaughter performance and meat quality of Haikang chickens. Jiangsu Agric Sci 2019;47:196-200. https://doi.org/10.15889/j.issn.1002-1302.2019.17.049
- Wang YW, Li YJ, Zhang XH, et al. Effects of gender and muscle location on meat components of Pingwu red chicken. Jiangsu Agric Sci 2018;46:179-82. https://doi.org/10.15889/j.issn.1002-1302.2018.22.042
- Li Q, Zhang L, Lu H, Song S, Luo Y. Comparison of postmortem changes in atp-related compounds, protein degradation and endogenous enzyme activity of white muscle and dark muscle from common carp (cyprinus carpio) stored at 4°C. LWT-Food Sci Technol 2017;78: 317-24. https://doi.org/10.1016/j.lwt.2016.12.035
- Bonsdorff T, Gautier M, Farstad W, Ronningen K, Lingaas F, Olsaker I. Mapping of the bovine genes of the de novo AMP synthesis pathway. Anim Genet 2004;35:438-44. https://doi.org/10.1111/j.1365-2052.2004.01201.x
- Epstein PM, Andrenyak DM, Smith CJ, Pappano AJ. Ontogenetic changes in adenylate cyclase, cyclic AMP phosphodiesterase and calmodulin in chick ventricular myocardium. Biochem J 1987;243:525-31. https://doi.org/10.1042/bj2430525
- Dennison CS, King CM, Dicken MS, Hentges ST. Age-dependent changes in amino acid phenotype and the role of glutamate release from hypothalamic proopiomelanocortin neurons. J Comp Neurol 2016;524:1222-35. https://doi.org/10.1002/cne.23900
- Keravis T, Lugnier C. Cyclic nucleotide phosphodiesterases (PDE) and peptide motifs. Curr Pharm Des 2010;16:111425. https://doi.org/10.2174/138161210790963760
- Fujishige K, Kotera J, Michibata H, et al. Cloning and characterization of a novel human phosphodiesterase that hydrolyzes both cAMP and cGMP (PDE10A). J Biol Chem 1999; 274:18438-45. https://doi.org/10.1074/jbc.274.26.18438
- Loughney K, Snyder PB, Uher L, Rosman GJ, Ferguson K, Florio VA. Isolation and characterization of PDE10A, a novel human 3', 5'-cyclic nucleotide phosphodiesterase. Gene 1999;234:109-17. https://doi.org/10.1016/s0378-1119(99)00171-7
- Beaumont V, Zhong S, Lin H, et al. Phosphodiesterase 10A inhibition improves cortico-basal ganglia function in Huntington's disease models. Neuron 2016;92:1220-37. https://doi.org/10.1016/j.neuron.2016.10.064
- Kumada Y, Benson DR, Hillemann D, et al. Evolution of the glutamine synthetase gene, one of the oldest existing and functioning genes. Proc Natl Acad Sci USA 1993;90:300913. https://doi.org/10.1073/pnas.90.7.3009
- He YJ, Hakvoort TB, Vermeulen JL, Lamers WH, Van RMA. Glutamine synthetase is essential in early mouse embryogenesis. Dev Dyn 2007;236:1865-75. https://doi.org/10.1002/dvdy.21185
- Spodenkiewicz M, Diez-Fernandez C, Rufenacht V, GemperleBritschgi C, Haberle J. Minireview on glutamine synthetase deficiency, an ultra-rare inborn error of amino acid biosynthesis. Biology 2016;5:40. https://doi.org/10.3390/biology5040040
- Weber G, Prajda N, Lui MS, et al. Multi-enzyme-targeted chemotherapy by acivicin and actinomycin. Adv Enzyme Regul 1982;20:75-96. https://doi.org/10.1016/0065-2571(82)90009-7
- Cox AG, Hwang KL, Brown KK, et al. Yap reprograms glutamine metabolism to increase nucleotide biosynthesis and enable liver growth. Nat Cell Biol 2016;18:886-96. https://doi.org/10.1038/ncb3389