DOI QR코드

DOI QR Code

Electrochemical Characteristics of MMO(Ti/Ru)-Coated Titanium in a Cathode Environment of Polymer Electrolyte Membrane Fuel Cell

MMO(Ti/Ru) 코팅된 타이타늄의 고분자 전해질 연료전지 양극환경에서의 전기화학적 거동

  • Heo, Ho-Seong (Graduate school, Mokpo national maritime university) ;
  • Kim, Seong-Jong (Division of marine engineering, Mokpo national maritime university)
  • 허호성 (목포해양대학교 대학원) ;
  • 김성종 (목포해양대학교 기관시스템공학부)
  • Received : 2022.08.25
  • Accepted : 2022.09.08
  • Published : 2022.11.02

Abstract

In this research, mixed metal oxide (TiO2, RuO2) coating was applied to grade 1 titanium as a bipolar plate for polymer electrolyte membrane fuel cell (PEMFC). Electrochemical experiments were carried out in an aqueous solution of pH 3 (H2SO4 + 0.1 ppm HF, 80 ℃) determined by DoE. The air was bubbled to simulate a cathode environment. Potentiodynamic polarization test revealed that corrosion current densities of the titanium substrate and MMO-coated specimen were 0.180 µA/cm2 and 4.381 µA/cm2, respectively. There was no active peak. After potentiostatic experiment, current densities of the titanium substrate and the MMO-coated specimen were 0.19 µA/cm2 and 1.05 µA/cm2, respectively. As a result of observing the surface before and after the potentiostatic experiment, cracked dried clay structures were observed without corrosion damage. Both the titanium substrate and the MMO-coated specimen could not satisfy the interfacial contact resistance suggested by the DoE. Thus, further research is needed before they could be applied as bipolar plates.

Keywords

References

  1. Y. Wang, D. F. R. Diaz, K. S. Chen, Z. Wang and X. C. Adroher, Materials, technological status, and fundamentals of PEM fuel cells - A review, Materials Today, 32, 178 (2020). Doi: https://doi.org/10.1016/j.mattod.2019.06.005
  2. D. H. Shin and S. J. Kim, Electrochemical Characteristics and Damage Behavior in Cathode Operating Conditions of 316L Stainless Steel with Test Time and Applied Potential in Metallic Bipolar Plates for PEMFC, Corrosion Science and Technology, 20, 451 (2021). Doi: https://doi.org/10.14773/cst.2021.20.6.451
  3. J. B. Lee and I. H. Oh, Corrosion characteristics and interfacial contact resistances of TiN and CrN coatings deposited by PVD on 316L stainless steel for polymer electrolyte membrane fuel cell bipolar plates, Corrosion Science and Technology, 12, 171 (2013). Doi: https://doi.org/10.14773/cst.2013.12.4.171
  4. T. Wilberforce, J. Thompson, and A. G. Olabi, Bipolar Plate Materials, Encyclopedia of Smart Materials, 2, 273(2022). Doi: https://doi.org/10.1016/B978-0-12-803581-8.11757-6
  5. T. Wilberforce, O. Ijaodola, E. Ogungbemi, F. N. Khatib, T. Leslie, Z. E. Hassan, J. Thomposon, and A. G. Olabi, Technical evaluation of proton exchange membrane (PEM) fuel cell performance - A review of the effects of bipolar plates coating, Renewable and Sustainable Energy Reviews, 113, 109286 (2019). Doi: https://doi.org/10.1016/j.rser.2019.109286
  6. B. Paul, and J. Andrews, PEM unitised reversible/regenerative hydrogen fuel cell systems: State of the art and technical challenges, Renewable and Sustainable Energy Reviews, 79, 585 (2017). Doi: https://doi.org/10.1016/j.rser.2017.05.112
  7. Y. Wang and D. O. Northwood, An investigation on metallic bipolar plate corrosion in simulated cathode and cathode environments of PEM fuel cells using potentialpH diagrams, International Journal of Electrochemical Science, 1, 447 (2006). Doi: http://www.electrochemsci.org/papers/1080447.pdf 1080447.pdf
  8. H. Tawfik, Y. Hung and D. Mahajan, Metal bipolar plates for PEM fuel cell-A review, Journal of Power Sources, 163, 755 (2007). Doi: https://doi.org/10.1016/j.jpowsour.2006.09.088
  9. W. R. Jacob, 4.20 - Impressed-current cathodes, Shreir's Corrosion, 4, 2781 (2010). Doi: https://doi.org/10.1016/B978-044452787-5.00154-2
  10. W. Wu, Z. H. Huang and T. T. Lim, Recent development of mixed metal oxide cathodes for electrochemical oxidation of organic pollutants in water, Applied Catalysis A: General, 480, 58 (2014). Doi: https://doi.org/10.1016/j.apcata.2014.04.035
  11. D. Y. Chang , S. G. Kang, Preparation and Characterization of Insoluble cathodes for Electrodeposition of Ni-W Alloys in Ammoniacal Citrate Bath, Journal of Surface Science and Engineering, 32, 686 (1999). Doi: https://www.dbpia.co.kr/journal/voisDetail?voisId=VOIS00048055
  12. H. Wang, M. A. Sweikart, and J. A. Turner, Stainelss steel as bipolar plate material for polymer electroylte membrane fuel cells, Journal of Power Sources, 115, 243(2003). Doi: https://doi.org/10.1016/S0378-7753(03)00023-5
  13. M. K. Han, M. J. Hwang, D. H. Won, Y. Soo. Kim, H. J. Song and Y. J. Park, Massive Transformation in Titanium-Silver Alloys and Its Effect on Their Mechanical Properties and Corrosion Behavior, Materials (Basel), 7, 6194 (2014). Doi: https://doi.org/10.3390/ma7096194
  14. M. K. Han, J. B. Im, M. J. Hwang, B. J. Kim, H. Y. Kim and Y. J. Park, Effect of Indium Content on the Microstructure, Mechanical Properties and Corrosion Behavior of Titanium Alloys, Metals, 5, 850 (2015). Doi: https://doi.org/10.3390/met5020850
  15. K. T. Jacob and R. Subramanian, Phase Diagram for the System RuO2-TiO2 in Air, Journal of Phase Equilibria and Diffusion, 29, 136 (2008). Doi: https://doi.org/10.1007/s11669-007-9236-1
  16. W. A. Gerrard and B. C. H. Steele, Microstructural investigations on mixed RuO2-TiO2 coatings, Journal of Applied Electrochemistry, 8, 417 (1978). Doi: https://doi.org/10.1007/BF00615837
  17. H. H. Pham, N. P. Nguyen, C. L. Do and B. T. Le, Nanosized IrxRu1-xO2 electrocatalysts for oxygen evolution reaction in proton exchange membrane water electrolyzer, Advances in Natural Sciences: Nanoscience and Nanotechnology, 6, 025015 (2015). Doi: https://doi.org/10.1088/2043-6262/6/2/025015
  18. M. Goudarzi , M. Ghorbani, The effect of layer number on the nanostructural Ternary Mixed Oxide containing Ti, Ru and Ir on titanium, Advanced Materials Research, 829, 638 (2014). Doi: https://doi.org/10.4028/www.scientific.net/AMR.829.638
  19. C. L. P. S. Zanta, A. R. D. Andrade and J. F. C. Boodts, Electrochemical behaviour of olefins: oxidation at ruthenium-titanium dioxide and iridium-titanium dioxide coated electrodes, Journal of Applied Electrochemistry, 30, 467 (2000). Doi: https://doi.org/10.1023/A:1003942411733
  20. L. D. Burke, O. J. Murphy, The electrochemical behaviour of RuO2-based mixed-oxide cathodes in base, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 109, 199 (1980). Doi: https://doi.org/10.1016/S0022-0728(80)80119-7
  21. C. A. D. Rodrigues, R. M. Bandeira, B. B. Duarte, G. T. Filho, V. Roche, and A. M. Jorge Jr, Effect of titanium nitride(TiN) on the corrosion behavior of a supermartensitic stainless steel, Materials and Corrosion, 70, 28 (2018). Doi: https://doi.org/10.1002/maco.201810289
  22. J. Bi, J. Yang, X. Liu, D. Wang, Z. Yang, G. Liu and X. Wang, Development and evaluation of nitride coated titanium bipolar plates for PEM fuel cells, International Journal of Hydrogen Energy, 46, 1144 (2021). Doi: https://doi.org/10.1016/j.ijhydene.2020.09.217
  23. M. Goudarzi , M. Ghorbani, A study on ternary mixed oxide coatings containing Ti, Ru, Ir by sol-gel method on titanium, Journal of Sol-Gel Science and Technology, 73, 332 (2015). Doi: https://doi.org/10.1007/s10971-014-3537-8