DOI QR코드

DOI QR Code

A Study on the Characteristics of Ca(OH)2 According to the Calcination Conditions of Oyster Shells and Its Application for Exterior Water Paints

굴 패각의 소성 조건에 따른 소석회의 특성과 외부용 수성 도료 적용 연구

  • Hwang, Dae Ju (Advanced Materials Team, Korea Institute of Limestone and Advanced Materials) ;
  • Yu, Young Hwan (Advanced Materials Team, Korea Institute of Limestone and Advanced Materials) ;
  • Han, Chang Soo (Migam Co., Ltd) ;
  • Lee, Jong Dae (Department of Chemical Engineering, Chungbuk National University)
  • 황대주 ((재)한국석회석신소연구소, 첨단소재팀) ;
  • 유영환 ((재)한국석회석신소연구소, 첨단소재팀) ;
  • 한창수 ((주)미감) ;
  • 이종대 (충북대학교 화학공학과)
  • Received : 2022.04.20
  • Accepted : 2022.06.20
  • Published : 2022.11.01

Abstract

CaO was prepared by calcining for oyster shells using a microwave kiln. It was analyzed to Ca(OH)2 synthed on hydration reaction from prepared CaO. The synthesized Ca(OH)2 was formulated as an external water paint. Oyster shells (325 mesh, 43 ㎛) were decarbonized for (a) 950 ℃/1 hr and (b) 1,150 ℃/1 hr to prepare CaO. In the calcination condition of (a), CaO was 56.7 wt%, and in the calcination condition of (b), CaO was 100 wt%. To compare CaO by calcination of oyster shells with that of limestone, limestone (25~30 mm) was decarbonized at 950 ℃/1 hr to prepare CaO, and as a result of the analysis(XRD), it was analyzed as CaO 100 wt%. CaO was prepared under the calcining conditions of oyster shells (b) 1,150 ℃/1 hr, and Ca(OH)2 was synthesized through hydration. Hydration conditions of the prepared CaO were (a) CaO : H2O(100 g : 200 g) and (b) CaO : H2O(100 g : 400 g). As a result of the hydration reaction, it was confirmed as low reactivity. 100 wt% of Ca(OH)2 was synthesized. In particular, Ca(OH)2 synthesized under the hydration condition of (a) was analyzed in a plate shape. An external water paint was formulated with Ca(OH)2 synthesized from oyster shells as the main component. When 15 items of the external water paint standard specification (KS M 6010) were analyzed, it was confirmed that all other criteria were satisfied except for freezing stability.

마이크로웨이브 소성로를 이용하여 굴 패각을 소성하여 CaO 제조하였다. 제조된 CaO를 수화 반응시켜서 Ca(OH)2를 분석하였다. 합성한 Ca(OH)2를 주성분으로하여 외부용 수성 도료 배합하였다. 굴 패각(325 mesh, 43 ㎛)은 (a) 950 ℃/1 시간와 (b) 1,150 ℃/1 시간 동안 탈탄산화반응을 시켜 CaO를 제조하였다. (a)의 소성 조건에서는 CaO 56.7 wt%이고 (b)의 소성 조건에서는 CaO 100 wt%였다. 굴 패각의 소성에 의한 CaO를 석회석의 경우와 비교하기 위하여 석회석(25~30 mm)을 950 ℃/1 시간 동안 탈탄산화 반응시켜서 CaO를 제조하였으며, XRD 분석 결과 CaO 100 wt%로 분석 되었다. 굴 패각의 소성 조건인 (b) 1,150 ℃, 1시간으로 CaO를 제조하여 수화 반응을 통하여 Ca(OH)2를 합성하였다. 제조된 CaO의 수화 조건은 (a) CaO : H2O(100 g : 200 g)과 (b) CaO : H2O(100 g : 400 g)로 수화 반응성을 실시하였다. 수화 반응 결과, 저 반응성으로 확인 되었다. 100 wt%의 Ca(OH)2를 합성하였다. 특히 (a)의 수화 조건에서 합성한 Ca(OH)2는 판상형으로 분석되었다. 굴 패각으로 합성한 Ca(OH)2를 주성분으로 외부용 수성 도료를 배합하였다. 외부용 수성 도료 표준 규격(KS M 6010)의 15개 항목에 대하여 분석하였을 때 냉동안정성을 제외한 다른 모든 기준에 적합한 것을 확인하였다.

Keywords

Acknowledgement

본 연구는 (주)미감의 수탁연구과제 지원비(2021)로 수행하였으며, 이에 감사드립니다.

References

  1. Kim, M. J., Wang, X., Lee, J. J., Lee, S. H., Kim, C.-J. and Kim, S. B., "Development of Flowable Backfill Material Using Waste Oyster Shell, Coal Ash, and Surplus Soil," Clean Technology, 19, 423-429(2013). https://doi.org/10.7464/KSCT.2013.19.4.423
  2. Kwon, Y. S., Lee, K. H. and Park, J. B., "Sorption Characteristics of Heavy Metals for Oyster Shell and Fly Ashm," J. Korea Soc. Waste Manag, 20, 337-346(2003).
  3. Moon, J. I., Jung, Y. J. and Sung, N. C., "Study on Potential Risks of Soil Amendment, Experiment Using Sewage Treatment Sludge and Oyster Shell," J. Korean Soc. Environ. Eng., 24, 715-724(2002).
  4. Lim, J. H., Cho, H. T. and Kim, J. H., "Optimization of Wet Flue Gas Desulfurization System Using Recycled Waste Oyster Shell as High-grade Limestone Substitutes," J. Cleaner Production, 318, 128492-128507(2021). https://doi.org/10.1016/j.jclepro.2021.128492
  5. Eo, S. H., Hwang, K. H. and Kim, J. G., "Application of Oyster Shells as Aggregates for Concrete," J. Korea Concr. Inst., 14, 540-548(2002). https://doi.org/10.4334/JKCI.2002.14.4.540
  6. Hwang, D. J., Ryu, J. Y. and Park, J. H., "Calcination of Megacrystalline Calcite Using Microwave and Electric Furnaces," J. Ind. Eng. Chem., 18(6), 1956-1963(2012). https://doi.org/10.1016/j.jiec.2012.05.011
  7. Hwang, D. J., Ryu, J. Y. and Park, J. H., "Preparation of CaCO3 Using Mega-crystalline Calcite in Electrical Furnace and Batch Type Microwave Kiln," J. Ind. Eng. Chem., 19(5), 1507-1516(2013). https://doi.org/10.1016/j.jiec.2013.01.017
  8. Hwang, D. J., Ryu, J. Y. and Yu, Y. H., "Characteristics of Precipitated Calcium Carbonate by Hydrothermal and Carbonation Processes with Mega-crystalline Calcite Using Rotary Microwave Kiln," J. Ind. Eng. Chem., 20(5), 2727-2734(2014). https://doi.org/10.1016/j.jiec.2013.10.061
  9. Hwang, D. J. and Cho, K. H., "Effects of Sodium Dodecyl Benzenesulfonic Acid (SDBS) on the Morphology and the Crystal Phase of CaCO3 ", Korean J. Chem. Eng., 28(9), 1927-1935(2011). https://doi.org/10.1007/s11814-011-0044-2
  10. Hwang, D. J., Kim, H. S. and Lee, S. K., "Development and Characterizations of Environment-friendly Lime Paint," J. Kor Ceram. Soc., 46(1), 47-52(2009). https://doi.org/10.4191/KCERS.2009.46.1.047
  11. Hwang, D. J., Yu, Y. H. and Lee, S. K., "Preparation of Environmental-friendly Lime Paints from Hydrated Lime and Hydrated Light Burned Dolomite," Korean J. Chem. Eng., 29(6), 823-829(2012). https://doi.org/10.1007/s11814-011-0252-9
  12. Inagaki, Koshiro., Harada, Kazuo., "Lime Plaster-Containing Adhesive and Hardening Material," JP patent 2000-072520(2000).
  13. Himeno, Rikuo., "Coating Composition," JP patent 2001-187876(2001).
  14. Masaru, Aoki., "Plaster Decoration Technique," JP patent 2002-030780(2002).
  15. Suzuki, Kenji., Horio, Masakwzu., "Moisture Permeable Film Having Humidity Controlling Function and its Manufacturing Method," JP patent 2002-143633(2002).
  16. Himeno, Rikuo., "Method for Stabilizing Dispersion of Plaster Composition in Water," JP patent 2003-307009(2003).
  17. Sugie, Tsunemi., Shinkai, Seiji., "Humidity Conditioning Method and Structure Therefor," JP patent 2001-180351(2001).
  18. Mikini, Akira., Hashimoto, Kazumasa., "Inorganic Coating Composition, Humidity Conditioning Material and Constructional Material Using The Same and Method for Producing Inorganic Coating Composition," JP patent 2002-095402(2002).
  19. Himeno, Rikuo., "Method for Stabilizing Water-Coating Lime Plaster Composition," JP patent 2003-305712(2003).
  20. Shono, Katsuhiko., "Constructional Coating Composition, Constructional Coating, and Method for Constructing Exterior and Interior Decoration of Building," JP patent 2003-306614(2003).
  21. Urano, Teruo., Ina, Yukio., "Slaked Lime-Based Coating Material Composition," JP patent 2004-123472(2004).
  22. Urano, Teruo., Ina, Yukio., Takeshima, Yukio., "Slaked Lime Based Coating Material Composition," JP patent 2004-307259(2004).
  23. Himeno, Rikuo, "Method for Inhibiting Color Difference of Colored Plaster Coating Resulting From Re-Coating," JP patent 2005-002787(2005).
  24. Yakusen, Sekkai., Sanyoo, Sooken., "Inorganic Coating Material and VOC-Adsorbing Functional Material Using The Same," JP patent 2005-105010(2005).
  25. Himeno, Mutsuo., "Coating Composition," WO A1 2002-004569(2002).
  26. Hwang, D. J. and Yu, Y. H., "A Study on Synthesis of Ca and Mg Compounds from Dolomite with Salt Additional React (MgCl2.6H2O)," Korean Chem. Eng. Res., 59(3), 1-11(2021).
  27. Noh, J. H. and Choi, J. H., "The Concept of Quality of Limestone and Its Evaluation Method," J. Miner. Soc. Korea(Mineral & industry), 15(1), 1-14(2002).
  28. Noh, J. H., Oh, S. J. and Kim, K. J., "Applied-mineralogical Study on the Mineral Facies and Characteristics of Domestic High-Ca limestone," J. Miner. Soc. Korea (Mineral & industry), 17(4), 339-355(2004).