Acknowledgement
이 논문은 동아대학교 교내 연구과제 지원을 받아 수행됨
References
- AlKaabi, L. A., Ahmed, L. S., Al Attiyah, M. F., & Abdel-Rahman, M. E. (2020). Predicting hypertension using machine learning: Findings from Qatar Biobank Study. Plos one, 15(10), e0240370. https://doi.org/10.1371/journal.pone.0240370
- An. H. M. (2010). Factors of health related quality of life of Korea male and female adults according to life cycle : by using 4th national health and nutrition examination survey, Master's Thesis, Graduate School of YonSei University, Seoul, Korea.
- Byeon, H. W. and Cho, S. H. (2015). The Predictive Modeling of Middle-aged Hypertension using Integrated Method of Decision Tree and Neural Network, Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology, 23(4). 13-28.
- Chen. T. and Guestrin. C. (2016). XGBoost: A Scalable Tree Boosting System, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785-794.
- Gu, S., Kim, Y. O., Kim, M. K., Yoon, J. S. and Park. K. (2012). Nutrient Intake, Lifestyle Factors and Prevalent Hypertension in Korean Adults: Results from 2007-2008 Korean National Health and Nutrition Examination Survey, Korean Journal of community Nutrition, 17(3), 329-340. https://doi.org/10.5720/kjcn.2012.17.3.329
- Hong, J. H., Lee, K. H., Lee, H. R., Cheong, H. S. and Cho, W. S. (2022). Metabolic Diseases Classification Models according to Food Consumption using Machine Learning, The Journal of the Korea Contents Association, 22(3), 354-360. https://doi.org/10.5392/JKCA.2022.22.03.354
- Jeon. W. J., Lee.1 Y. B. and Geum. Y. J. (2021). Airline Service Quality Evaluation Based on Customer Review Using Machine Learning Approach and Sentiment Analysis, The Journal of Society for e-Business Studies, 26(4), 15-36. https://doi.org/10.7838/JSEBS.2021.26.4.015
- Ke. G., Meng. Q., Finley. T., Wang. T., Chen. W., Ma. W., Ye. Q. and Liu. T. Y. (2017). LightGBM: A Highly Efficient Gradient Boosting Decision Tree, Advances in Neural Information Processing Systems, 30.
- Kim, K. Y. (2019). Risk factors for hypertension in elderly people aged 65 and over, and adults under age 65, Journal of Korea Academia-Industrial cooperation Society, 20(1), 162-169.
- Kim. H. J. and Min. E. S. (2020). Health behaviors and quality of life by life cycle of hypertensive patients, Journal of Convergence for Information Technology (JCIT), 10(7), 58-66.
- Kim. P. J. (2019). An Analytical Study on Automatic Classification of Domestic Journal articles Using Random Forest, Journal of the Korean Society for Information Management (JKOSIM), 36(2), 57-77.
- Kim. S. A. and Jung. H. S. (2019). The Determinants of Life Satisfaction in Different Age Groups and Their Policy Implications, Health and welfare policy forum, 4(270), 95-104.
- LaFreniere, D., Zulkernine, F., Barber, D., Martin, K. (2016). Using machine learning to predict hypertension from a clinical dataset. In 2016 IEEE symposium series on computational intelligence (SSCI), IEEE. 1-7.
- Lee, B. J. (2021). Prediction Model of Hypertension Using Sociodemographic Characteristics Based on Machine Learning, KIPS Transactions on Software and Data Engineering, 10(11), 541-546. https://doi.org/10.3745/KTSDE.2021.10.11.541
- Lee, E. K. (2013). Factors associated with Hypertension Control in Korean Adults : The Fifth Korea National Health and Nutrition Examination Survey (KNHANES V-2), Journal of The Korean Data Analysis Society, 15(6), 3203-3217.
- Lee, I. J. and Lee, J. H. (2020). Predictive of Osteoporosis by Tree-based Machine Learning Model in Post-menopause Woman, Journal of Radiological Science and Technology, 43(6), 495-502. https://doi.org/10.17946/JRST.2020.43.6.495
- Lee. H. Y. (2018). Evaluation and Management of Hypertensive Patients According to New Hypertension Guideline, The Korean Journal of Medicine, 93(5), 447-451. https://doi.org/10.3904/kjm.2018.93.5.447
- Lee. K. E and Cho. E. H. (2016). Factors Influencing Health related Quality of Life in Patients with Hypertension : Based on the 5th Korean National Health and Nutrition Examination Survey, The Journal of the Korea Contents Association, 16(5), 399-409. https://doi.org/10.5392/JKCA.2016.16.05.399
- Lim. H. K. (2018). Prediction of Myocardial Infarction/Angina and Selection of Major Risk Factors Using Machine Learning. Journal of The Korean Data Analysis Society, 20(2), 647-656. https://doi.org/10.37727/jkdas.2018.20.2.647
- Mun. S. E., Jang. S. B., Lee. J. H. and Lee. J. S. (2016). Technology Trends in Machine Learning and Deep Learning, Information and Communications Magazine, 33(10), 49-56.
- Oh. T. S., Kim. D. K., Won. C. W., Kim. S. Y., Jeong. E. J., Yang. J. S., Yu. J. H., Kim. B. S. and Lee. J. H. (2022). A Machine-Learning-Based Risk Factor Analysis for Hypertension: Korea National Health and Nutrition Examination Survey 2016-2019, Korean Journal of Family Practice, 12(3), 173-178. https://doi.org/10.21215/kjfp.2022.12.3.173
- Samadian F., Dalili N., Jamalian A. (2016). Lifestyle modifications to prevent and control hypertension, Iran J Kidney Dis, 10(5), 237-263.
- Son. J. W. (2021). A study on the forecasting model for contract group of apartment by using machine learning methods, Master's Thesis, M. Graduate School of HanYang University, Seoul, Korea.
- The Korean Society of Hypertension(KSH) (2018). 2018 Hypertension Treatment Guidelines.
- The Korean Society of Hypertension (2022). Press release as a result of analysis of the national prevalence rate using big data from the National Health Insurance Corporation.
- Yoon. S. and Bang. H. T. (2021). Evaluation of a Thermal Conductivity Prediction Model for Compacted Clay Based on a Machine Learning Method, KSCE Journal of Civil and Environmental Engineering Research, 41(2), 123-131. https://doi.org/10.12652/KSCE.2021.41.2.0123