과제정보
이 연구는 금오공과대학교 학술연구비로 지원되었음(과제 번호: 2019104170).
참고문헌
- Adeyeri, O.E., Laux, P., Arnault, J., Lawin, A.E., and Kunstmann, H. (2020). "Conceptual hydrological model calibration using multi-objective optimization techniques over the transboundary Komadugu-Yobe basin, Lake Chad Area, West Africa." Journal of Hydrology: Regional Studies, Vol. 27, 100655. https://doi.org/10.1016/j.ejrh.2019.100655
- Arulampalam, M.S., Maskell, S., Gordon, N., and Clapp, T. (2002). "A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking." IEEE Transactions on Signal Processing, Vol. 50, No. 2, pp. 174-188. https://doi.org/10.1109/78.978374
- Bloschl, G., Bierkens, M.F.P., Chambel, A., Cudennec, C., Destouni, G., Fiori, A., Kirchner, J.W., McDonnell, J.J., Savenije, H.H.G., Sivapalan, M. et al. (2019). "Twenty-three unsolved problems in hydrology (UPH) - a community perspective." Hydrological Sciences Journal, Vol. 64, No. 10, pp. 1141-1158. https://doi.org/10.1080/02626667.2019.1620507
- Boucher, M.-A., Quilty, J., and Adamowski, J. (2020). "Data assimilation for streamflow forecasting using extreme learning machines and multilayer perceptrons." Water Resources Research, Vol. 56, No. 6, e2019WR026226.
- Choi, J.-H., and Kim, S.-D. (2021). "Estimating time-varying parameters for monthly water balance model using particle filter: assimilation of stream flow data." Journal of Korea Water Resources Association, Vol. 54, No. 6, pp. 365-379. https://doi.org/10.3741/JKWRA.2021.54.6.365
- Clark, M.P., Rupp, D.E., Woods, R.A., Zheng, X., Ibbitt, R.P., Slater, A.G., Schmidt, J., and Uddstrom, M.J. (2008). "Hydrological data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed hydrological model." Advances in Water Resources, Vol. 31, No. 10, pp. 1309-1324. https://doi.org/10.1016/j.advwatres.2008.06.005
- Doucet, A., Godsill, S., and Andrieu, C. (2000). "On sequential Monte Carlo sampling methods for Bayesian filtering." Statistics and Computing, Vol. 10, No. 3, pp. 197-208. https://doi.org/10.1023/A:1008935410038
- Evensen, G. (1994). "Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics." Journal of Geophysical Research: Oceans, Vol. 99, No. C5, pp. 10143-10162. https://doi.org/10.1029/94JC00572
- Evensen, G. (2003). "The Ensemble Kalman Filter: theoretical formulation and practical implementation." Ocean Dynamics, Vol. 53, No. 4, pp. 343-367. https://doi.org/10.1007/s10236-003-0036-9
- Gupta, H.V., Kling, H., Yilmaz, K.K., and Martinez, G.F. (2009). "Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling." Journal of Hydrology, Vol. 377, No. 1-2, pp. 80-91. https://doi.org/10.1016/j.jhydrol.2009.08.003
- Hendricks Franssen, H.J., and Kinzelbach, W. (2008). "Real-time groundwater flow modeling with the Ensemble Kalman Filter: Joint estimation of states and parameters and the filter inbreeding problem." Water Resources Research, Vol. 44, No. 9, W09408. doi: 10.1029/2007WR006505.
- Kim, Y.S., Lee, G.H., Lee, D.E., and Noh, S.J. (2015). "Parameter estimation and uncertainty assessment of a soil erosion model using data assimilation method." Journal of Korean Society of Hazard Mitigation, Vol. 15, No. 6, pp. 373-382. https://doi.org/10.9798/KOSHAM.2015.15.6.373
- Knoben, W.J.M., Freer, J.E., and Woods, R.A. (2019). "Technical note: Inherent benchmark or not? Comparing Nash-Sutcliffe and Kling-Gupta efficiency scores." Hydrology and Earth System Sciences, Vol. 23, No. 10, pp. 4323-4331. https://doi.org/10.5194/hess-23-4323-2019
- Lavenne, A., Thirel, G., Andreassian, V., Perrin, C., and Ramos, M.-H. (2016). "Spatial variability of the parameters of a semidistributed hydrological model." Proceedings of the International Association of Hydrological Sciences, Vol. 373, pp. 87-94. https://doi.org/10.5194/piahs-373-87-2016
- Leach, J.M., and Coulibaly, P. (2019). "An extension of data assimilation into the short-term hydrologic forecast for improved prediction reliability." Advances in Water Resources, Vol. 134, 103443. https://doi.org/10.1016/j.advwatres.2019.103443
- Lee, B.J., and Bae, D.-H. (2011). "Development of real-time river flow forecasting model with data assimilation technique." Journal of Korea Water Resources Association, Vol. 44, No. 3, pp. 199-208. https://doi.org/10.3741/JKWRA.2011.44.3.199
- Lee, B.J., Jung, I.-W., Jeong, H.-S., and Bae, D.-H. (2013). "Development of realtime dam's hydrologic variables prediction model using observed data assimilation and reservoir operation techniques." Journal of Korea Water Resources Association, Vol. 46, No. 7, pp. 755-765. https://doi.org/10.3741/JKWRA.2013.46.7.755
- Lee, D.U., Kim, Y.S., Yu, W.S., and Lee, G.H. (2017). "Evaluation on applicability of on/off-line parameter calibration techniques in rainfall-runoff modeling." Journal of Korea Water Resources Association, Vol. 50, No. 4, pp. 241-252. https://doi.org/10.3741/JKWRA.2017.50.4.241
- Liu, Y., Weerts, A.H., Clark, M., Hendricks Franssen, H.-J., Kumar, S., Moradkhani, H., Seo, D.-J., Schwanenberg, D., Smith, P., van Dijk, A.I.J.M., van Velzen, N., He, M., Lee, H., Noh, S.J., Rakovec, O., and Restrepo, P. (2012). "Advancing data assimilation in operational hydrologic forecasting: Progresses, challenges, and emerging opportunities." Hydrology and Earth System Sciences, Vol. 16, No. 10, pp. 3863-3887. https://doi.org/10.5194/hess-16-3863-2012
- Le Moine, N. (2008). Le bassin versant de surface vu par le souterrain: Une voie d'amelioration des performances et du realisme des modeles pluie-debit?. Ph. D. Dissertation, Universite Pierre et Marie Curie Paris VI, Paris, France, pp. 149-152.
- Noh, S.J. (2013). Sequential Monte Carlo methods for probabilistic forecasts and uncertainty assessment in hydrologic modeling, Ph. D. Dissertation, Kyoto University, Kyoto, Japan.
- Noh, S.J., Rakovec, O., Weerts, A.H., and Tachikawa, Y. (2014). "On noise specification in data assimilation schemes for improved flood forecasting using distributed hydrological models." Journal of Hydrology, Vol. 519, pp. 2707-2721. https://doi.org/10.1016/j.jhydrol.2014.07.049
- Noh, S.J., Tachikawa, Y., Shiiba, M., and Kim, S. (2011a). "Dual state-parameter updating scheme on a conceptual hydrologic model using sequential Monte Carlo Filters." Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering), Vol. 67, No. 4, p. I_1-I_6.
- Noh, S.J., Tachikawa, Y., Shiiba, M., and Kim, S. (2011b). "Applying sequential Monte Carlo methods into a distributed hydrologic model: lagged particle filtering approach with regularization." Hydrology and Earth System Sciences, Vol. 15, No. 10, pp. 3237-3251. https://doi.org/10.5194/hess-15-3237-2011
- Noh, S.J., Tachikawa, Y., Shiiba, M., and Kim, S. (2012). "Ensemble Kalman Filtering and particle filtering in a lag-time window for short-term streamflow forecasting with a distributed hydrologic model." Journal of Hydrologic Engineering, Vol. 18, No. 12, pp. 1684-1696.
- Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andreassian, V., Anctil, F., and Loumagne, C. (2005). "Which potential evapotranspiration input for a lumped rainfall - runoff model?: Part 2 - Towards a simple and efficient potential evapotranspiration model for rainfall - runoff modelling." Journal of Hydrology, Vol. 303, No. 1, pp. 290-306. https://doi.org/10.1016/j.jhydrol.2004.08.026
- Oudin, L., Moulin, L., Bendjoudi, H., and Ribstein, P. (2010). "Estimating potential evapotranspiration without continuous daily data: possible errors and impact on water balance simulations." Hydrological Sciences Journal, Vol. 55, No. 2, pp. 209-222. https://doi.org/10.1080/02626660903546118
- Piazzi, G., Thirel, G., Perrin, C., and Delaigue, O. (2021). "Sequential data assimilation for streamflow forecasting: Assessing the sensitivity to uncertainties and updated variables of a conceptual hydrological model at basin scale." Water Resources Research, Vol. 57, No. 4, e2020WR028390. doi: 10.1029/2020WR028390
- Ristic, B., Arulampalam, S., and Gordon, N. (2004). Beyond the Kalman Filter: Particle filters for tracking applications. Artech House, Boston, MA, U.S. and London, UK.
- Shen, H., Seo, D.-J., Lee, H., Liu, Y., and Noh, S. (2022). "Improving flood forecasting using conditional bias-aware assimilation of streamflow observations and dynamic assessment of flow-dependent information content." Journal of Hydrology, Vol. 605, 127247. https://doi.org/10.1016/j.jhydrol.2021.127247
- Yoo, C., Hwang, J.-H., and Kim, J. (2012). "Use of the extended Kalman Filter for the real-time quality improvement of runoff data: 1. Algorithm construction and application to one station." Journal of Korea Water Resources Association, Vol. 45, No. 7, pp. 697-711. https://doi.org/10.3741/JKWRA.2012.45.7.697