DOI QR코드

DOI QR Code

Experimental analysis on the morphologic changes and adaption of the channels to floodplain vegetation

홍수터 식생에 의한 하도의 지형변화와 적응과정 실험적 분석

  • Jang, Chang-Lae (Department of Civil Engineering, Korea National University of Transportation)
  • 장창래 (한국교통대학교 건설환경도시교통공학부)
  • Received : 2022.08.25
  • Accepted : 2022.09.28
  • Published : 2022.10.31

Abstract

This study investigates the evolution processes of alternate bars in the channel with bank stability by vegetation by laboratory experiment. Laboratory experiments are conducted to elucidate the behavior of alternate bars by the influence of riparian vegetation on the rivers with erodible banks. To control bank stability of the channel, the actual vegetation, alfalfa, is grown by adjusting the density of alfalfa on the flood plain. As the vegetation density increases in the flood plain, the bank erosion rates and the channel widening rates decrease and the bank stability increases. The alternate bars migrate slow downstream over time. Moreover, the bars in a channel with strong banks migrate rapidly, which is related with the aspect ratio, that is, width to depth ratio. The bar wavelength decrease with vegetation density. Our laboratory experiments show that the behavior of bars differ according to bank strength.

본 연구에서는 홍수터 식생에 의한 하안의 안정성을 고려하여 하도에서 사주의 거동과 하도의 지형변화 적응과정을 실내실험을 수행하여 분석하였다. 초기 직류하도에서 하안침식이 발생하고 하폭이 증가한다. 하폭 대 수심의 비가 증가한 후에, 교호사주가 발달하고, 하류로 이동한다. 시간이 증가함에 따라, 사주의 이동속도는 감소하고 사주의 파장은 증가한다. 홍수터에서 식생 밀도가 증가함에 따라, 하안침식율은 감소한다. 그러나 사주의 이동속도는 증가한다. 이는 하안의 안정성 변화가 사주의 이동속도에 영향을 주기 때문이다. 하폭이 증가하고 수심이 감소하면서 무차원 소류력인 Shield Number는 증가하며, 사주의 이동속도도 증가한다. 이는 또한 이동하는 교호사주와 선택적 침식에 의해 발생한 불규칙한 하안 사이에 작용하는 강제효과 때문에 하안의 안정성이 작은 하도에서 사주의 이동속도는 감소한다. 시간이 증가함에 따라 사주의 파장은 증가한다. 사주의 파장이 증가하면서 사주의 이동속도는 감소한다.

Keywords

Acknowledgement

이 논문은 2022년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(NRF-2021R1I1A3048276).

References

  1. Asahi, K., Shimizu, Y., Nelson, J., and Parker, G. (2013). "Numerical simulation ofriver meandering with self-evolving banks." Journal of Geophysical esearch - Earth Surface, Vol. 118, pp. 2208-2229. https://doi.org/10.1002/jgrf.20150
  2. Bertoldi, W., and Tubino, M. (2005), "Bed and bank evolution of bifurcation channels." Water Resources Research, Vol. 41, No. 7, W07001. doi: 10.1029/2004WR003333.
  3. Bertoldi, W., Siviglia, A., Tettamanti1, S., Toffolon M., Vetsch, D., and Francalanci, S. (2014), "Modeling vegetation controls on fluvial morphological trajectories," Geophysical Research Letters, Vol. 41, No. 20, pp. 7167-7175. doi: 10.1002/2014GL061666.
  4. Bywater-Reyes, S., Diehl1, R.M., and Wilcox, A.C. (2018). "The influence of a vegetated bar on channel-bend flow dynamics." Earth Surface Dynamics, Vol. 6, pp. 487-503. doi: 10.5194/esurf-6-487-2018.
  5. Choi, S.U., Yoon, B.M., Woo, H., and Cho, K.H. (2004). "Effect offlow-regime change due to damming on the river morphology and vegetation cover in the downstream river reach: A case of Hapchon dam on the Hwang River." Journal of Korea Water Resources Association, Vol. 37, No. 1, pp. 55-66. https://doi.org/10.3741/JKWRA.2004.37.1.055
  6. Colombini, M., Seminara, G., and Tubino, M. (1987). "Finite-amplitude alternate bars." Journal of Fluid Mechanics, Vol. 181, pp. 213-232. https://doi.org/10.1017/S0022112087002064
  7. Crosato, A., and Mosselman, E. (2009). "Simple physics-based predictor for the number of river bars and the transition between meandering and braiding." Water Resources Research, Vol. 45, No. 3, W03424. doi: 10.1029/2008WR007242.
  8. Crosato, A., and Samir Saleh, M. (2011). "Numerical study on the effects of floodplain vegetation on river planform style." Earth Surface Processes and Landforms, Vol. 36, No. 6, pp. 711-720. doi: 10.1002/esp.2088.
  9. Defina, A. (2003). "Numerical experiments on bar growth." Water Resources Research, Vol. 39, No. 4, 1092. https://doi.org/10.1029/2002WR001455
  10. Eaton, B.C., and Giles, T.R. (2009). "Assessing the effect of vegetation-related bank strength on channel morphology and stability in gravel-bed streams using numerical models." Earth Surface Processes and Landforms, Vol. 34, No. 5, pp. 712-724, doi: 10.1002/esp.1768.
  11. Fujita, Y., and Muramoto, Y. (1982). "Experimental study on stream channel processes in alluvial rivers." Bulletins - Disaster Prevention Research Institute, Kyoto Univ., Vol. 35. No. 314, pp. 55-86.
  12. Gran, K., and Paola, C. (2001). "Riparian vegetation controls on braided stream dynamics." Water Resources Research, Vol. 37, No. 12, pp. 3275-3283. https://doi.org/10.1029/2000WR000203
  13. Hasegawa, K. (1984). Hydraulic research on planimetric forms, bed topographies and flow in alluvial rivers, Ph.D. Dissertation, Hokkaido University, Japan.
  14. Hoey, T.B., and Sutherland, A.J. (1991). "Channel morphology and bedload pulses in braided rivers: A laboratory study." Earth Surface Processes and Landforms, Vol. 16, pp. 447-462. https://doi.org/10.1002/esp.3290160506
  15. Jang, C.-L. (2013). "Experimental analysis of the morphological changes of the vegetated channels." Journal of Korea Water Resources Association, KWRA, Vol. 46, No. 9, pp. 909-919. https://doi.org/10.3741/JKWRA.2013.46.9.909
  16. Jang, C.-L., and Shimizu, Y. (2005). "Numerical simulations of the behavior of alternate bars with different bank strengths." Journal of Hydraulic Research, Vol. 43, No. 6, pp. 595-611. https://doi.org/10.1080/00221680509500379
  17. Jang, C.-L., and Shimizu, Y. (2007). "Vegetation effects on the morphological behavior of alluvial channels." Journal of Hydraulic Research, IAHR, Vol. 45, No. 6, pp. 763-772. https://doi.org/10.1080/00221686.2007.9521814
  18. Jang, C.-L., and and Shimizu, Y. (2010). "Numerical simulation of sand bars downstream of Andong Dam."KSCE Journal of Civil and Environmental Engineering Research, Vol. 30, No. 4B, pp. 379-388. https://doi.org/10.12652/KSCE.2010.30.4B.379
  19. Kim, W., and Kim, S. (2019). "Analysis of the riparian vegetation expansion in middle size rivers in Korea." Journal of Korea Water Resources Association, Vol. 52, No. S-2, pp. 875-885. https://doi.org/10.3741/JKWRA.2019.52.S-2.875
  20. Kondolf, G.M., and Wolman, M.G. (1993). "The sizes of salmonid spawning gravels." Water Resources Research, Vol. 29, pp. 2275-2285. https://doi.org/10.1029/93WR00402
  21. Lee, T.H., and Kim, S.H. (2021). "Analysis of changes in cross section and flow rate due to vegetation establishment in Naeseong stream." Journal of Korea Water Resources Association, Vol. 54, No. 3, pp. 203-215. https://doi.org/10.3741/JKWRA.2021.54.3.203
  22. Lopez, M., and Garcia, M.(2001). "Mean flow and turbulence strucuture of open channel flow through non-emergent vegetation." Journal of Hydraulic Engineering, ASCE, Vol. 127, pp. 392-402. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:5(392)
  23. Nepf, H.M (2012). "Hydrodynamics of vegetated channels." Journal of Hydraulic Research, IAHR, Vol. 50, No. 3, pp. 262-279. doi: 10.1080/00221686.2012.696559.
  24. Nepf, H.M., and Vivoni, E.R. (2000). "Flow structures in depth-limited, vegetated flow." Journal of Geophysical Research, Vol. 105, No. C12, pp. 28547-28557. https://doi.org/10.1029/2000JC900145
  25. Seminara, G., and Tubino, M. (1989). On the process of meander formation. Fourth International Symposium on River Sedimentation, Beijing, China.
  26. Tal, M., and Paola, C. (2007). "Dynamic single-thread channels maintained by the interaction of flow and vegetation." Geology, Vol. 35, No. 4, pp. 347-350. doi: 10.1130/G23260A.1.
  27. Thorne, S.D., and Furbish, D.J. (1995). "Influences of coarse bank roughness on flow within a sharply curved river bend." Geomorphology, Vol. 12, No. 3, pp. 241-257. doi: 10.1016/0169-555X(95)00007-R.
  28. Tsujimoto, T. (1999). "Fluvial processes in streams with vegetation." Journal of Hydraulic Research, IAHR, Vol. 106, No. 6, pp. 789-803. https://doi.org/10.1080/00221689909498512
  29. Vargas-Luna, A., Crosato, A., and Uijttewaal, W.S.J. (2015). "Effects of vegetation on flow and sediment transport: Comparative analyses andvalidation of predicting models." Earth Surface Processes and Landforms, Vol. 40, No. 2, pp. 157-176. doi: 10.1002/esp.3633.
  30. Vargas-Luna, A., Duro, G., Crosato, A., and Uijttewaal, W. (2019). "Morphological adaptation of river channels to vegetation establishment: A laboratory study." Journal of Geophysical Research: Earth Surface, Vol. 124, No.7, pp. 1981-1995. doi: 10.1029/2018JF004878.