DOI QR코드

DOI QR Code

Creating Structure with Pymatgen Package and Application to the First-Principles Calculation

Pymatgen 패키지를 이용한 구조 생성 및 제일원리계산에의 적용

  • Lee, Dae-Hyung (School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology(UNIST)) ;
  • Seo, Dong-Hwa (School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology(UNIST))
  • 이대형 (울산과학기술원 에너지화학공학과) ;
  • 서동화 (울산과학기술원 에너지화학공학과)
  • Received : 2022.09.01
  • Accepted : 2022.09.27
  • Published : 2022.11.01

Abstract

Computational material science as an application of Density Functional Theory (DFT) to the discipline of material science has emerged and applied to the research and development of energy materials and electronic materials such as semiconductor. However, there are a few difficulties, such as generating input files for various types of materials in both the same calculating condition and appropriate parameters, which is essential in comparing results of DFT calculation in the right way. In this tutorial status report, we will introduce how to create crystal structures and to prepare input files automatically for the Vienna Ab initio Simulation Package (VASP) and Gaussian, the most popular DFT calculation programs. We anticipate this tutorial makes DFT calculation easier for the ones who are not experts on DFT programs.

밀도범함수이론(density functional theory, DFT)이 등장한 이래로, 이를 재료과학에 적용하여 에너지 재료 및 반도체와 같은 전자재료들의 연구개발에 활발하게 활용되고 있다. 하지만 DFT 계산 프로그램을 실행할 때 필요한 입력 파일 생성 시 여러 가지 소재들에 대해 동일한 계산 조건을 맞춰 주고 파라미터들을 알맞게 설정해 줘야 올바른 계산 결과 비교가 가능한데, 이런 부분들에 대해 진입 장벽이 높다는 어려움이 있다. 이에 본 논문에서는 Python Materials Genomics (pymatgen) 파이썬 패키지를 이용해 분자 및 결정구조를 다루고 널리 사용되는 DFT 계산 프로그램인 Vienna Ab initio Simulation Package (VASP) 및 Gaussian 입력 파일 생성에 대해 소개하고자 한다. 이를 통해 해당 프로그램에 대한 전문적인 지식이 많지 않더라도 보다 일관적인 계산 조건에서 결과들을 손쉽게 수행할 수 있게 되기를 기대한다.

Keywords

Acknowledgement

This work was supported by the 2019 Research Fund(1.190150.01) of UNIST.

References

  1. P. Hohenberg and W. Kohn, Phys. Rev., 136, B864 (1964). [DOI: https://doi.org/10.1103/PhysRev.136.B864]
  2. W. Kohn and L. J. Sham, Phys. Rev., 140, A1133 (1965). [DOI: https://doi.org/10.1103/PhysRev.140.A1133]
  3. J. Hafner, J. Comput. Chem., 29, 2044 (2008). [DOI: https://doi.rg/10.1002/jcc.21057]
  4. S. Kim, M. Aykol, V. I. Hegde, Z. Lu, S. Kirklin, J. R. Croy, M. M. Thackeray, and C. Wolverton, Energy Environ. Sci., 10, 2201 (2017). [DOI: https://doi.org/10.1039/C7EE01782K]
  5. D. -H. Seo, J. Lee, A. Urban, R. Malik, S. Y. Kang, and G. Ceder, Nat. Chem., 8, 692 (2016). [DOI: https://doi.org/10.1038/nchem. 524]
  6. S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V. L. Chevrier, K. A. Persson, and G. Ceder, Comput. Mater. Sci., 68, 314 (2013). [DOI: https://doi.org/10.016/j.commatsci.2012.10.028]
  7. WEBSITE: https://docs.conda.io/en/latest/miniconda.html, accessed date: September 2022.
  8. WEBSITE: https://pymatgen.org/installation.html, accessed date: September 2022.
  9. WEBSITE: https://pymatgen.org/index.html, accessed date: September 2022.
  10. WEBSITE: https://pymatgen.org/modules.html, accessed date: September 2022.
  11. M. Rabiei, A. Palevicius, A. Dashti, S. Nasiri, A. Monshi, A. Vilkauskas, and G. Janusas, Mater., 13, 4380 (2020). [DOI: https://doi.org/10.3390/ma13194380]
  12. S. Narasimhan and S. D. Gironcoli, Phys. Rev. B, 65, 064302 (2002). [DOI: https://doi.org/10.1103/PhysRevB.65.064302]
  13. G. I. Csonka, J. P. Perdew, A. Ruzsinszky, P.H.T. Philipsen, S. Lebegue, J. Paier, O. A. Vydrov, and J. G. Angyan, Phys. Rev. B, 79, 155107 (2009). [DOI: https://doi.org/10.1103/PhysRevB.9.155107]
  14. WEBSITE: https://pymatgen.org/pymatgen.io.vasp.sets.html, accessed date: September 2022.
  15. A. Jain, G. Hautier, C. J. Moore, S. P. Ong, C. C. Fischer, T. Mueller, K. A. Persson, and G. Ceder, Comput. Mater. Sci., 50, 2295 (2011). [DOI: https://doi.org/10.1016/j.commatsci.2011. 2.023]
  16. A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. A. Persson, APL Mater. 1, 011002 (2013). [DOI: https://doi.org/0.1063/1.4812323] 1063/1.4812323
  17. Z. Deng, Z. Zhu, I. -H. Chu, and S. P. Ong, Chem. Mater., 29, 281 (2017). [DOI: https://doi.org/10.1021/acs.chemmater.6b02648]
  18. WEBSITE: https://github.com/materialsvirtuallab/pymatgenanalysis-diffusion, accessed date: September 2022.
  19. WEBSITE: https://pymatgen.org/pymatgen.io.html, accessed date: September 2022.