DOI QR코드

DOI QR Code

잉크젯 프린팅 공정을 통해 제작된 BaTiO3 Capacitor의 유전특성 분석

Dielectric Property Analysis of BaTiO3 Capacitor Manufactured by Inkjet Printing Process

  • 김유진 (공주대학교 신소재공학부) ;
  • 이경영 (공주대학교 신소재공학부) ;
  • 이인곤 (한화시스템 특수레이다팀) ;
  • 홍익표 (공주대학교 정보통신공학부) ;
  • 김지훈 (공주대학교 신소재공학부)
  • Kim, Yu-Jin (Division of Materials Engineering, Kongju National University) ;
  • Lee, Gyeong-Yeong (Division of Materials Engineering, Kongju National University) ;
  • Lee, In-Gon (Specific Radar team, Hanwha systems) ;
  • Hong, Ic-Pyo (Department of Information and Communication Engineering, Kongju National University) ;
  • Kim, Ji-Hoon (Division of Materials Engineering, Kongju National University)
  • 투고 : 2022.07.29
  • 심사 : 2022.09.07
  • 발행 : 2022.11.01

초록

BaTiO3 is one of the ferroelectric materials with excellent dielectric properties such as high dielectric constant, low dielectric loss, and is widely used for the manufacturing of capacitors, piezoelectric converters, microsensors, and ferroelectric memories. Inkjet printing is a technology which uses digital and contactless methods which significantly improves flexibility associated with material and structural design, reducing manufacturing costs. Therefore, the top and bottom electrodes, BaTiO3 ink, and photocurable resin were all printed by an inkjet to produce a BaTiO3 capacitor. The properties of the printed thin film were analyzed. It was confirmed that the photocurable resin ink was well-infiltrated between the BaTiO3 powder particles printed by inkjet. The dielectric properties of the capacitor such as dielectric constant which varies in accordance with frequency, polarization and tunability that changes with voltage, were measured.

키워드

과제정보

본 연구는 2019년 국방과학기술연구소 미래도전국방기술 연구개발사업(9127786)의 지원을 받았습니다.

참고문헌

  1. G. H. Haertling, J. Am. Ceram. Soc., 82, 797 (1999). [DOI: https://doi.org/10.1111/j.1151-2916.1999.tb01840.x]
  2. M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G. A. Rossetti Jr., and J. Rodel, Appl. Phys. Rev., 4, 041305 (2017). [DOI: https://doi.org/10.1063/1.4990046]
  3. D. Roy and S. B. Krupanidhi, Appl. Phys. Lett., 61, 2057 (1992). [DOI: https://doi.org/10.1063/1.108305]
  4. N. Ortega, A. Kumar, O. Resto, O. A. Maslova, Y. I. Yuzyuk, J. F. Scott, and R. S. Katiyar, J. Appl. Phys., 114, 104102 (2013). [DOI: https://doi.org/10.1063/1.4820576]
  5. K. Iijima, T. Terashima, K. Yamamoto, K. Hirata, and Y. Bando, Appl. Phys. Lett., 56, 527 (1990). [DOI: https://doi.org/10.1063/1.103300]
  6. B. K. Roy and J. Cho, J. Am. Ceram. Soc., 95, 1189 (2012). [DOI: https://doi.org/10.1111/j.1551-2916.2012.05104.x]
  7. M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, Nano Lett., 8, 4048 (2008). [DOI: https://doi.org/10.1021/nl802981q]
  8. A. Koka and H. A. Sodano, Nat. Commun., 4, 1 (2013). [DOI: https://doi.org/10.1038/ncomms3682]
  9. M. Selvaraj, V. Venkatachalapathy, J. Mayandi, S. Karazhanov and J. M. Pearce, AIP Adv., 5, 117119 (2015). [DOI: https://doi.org/10.1063/1.4935645]
  10. P. Calvert, Chem. Mater., 13, 3299 (2001). [DOI: https://doi.org/10.1021/cm0101632]
  11. M. Singh, H. M. Haverinen, P. Dhagat, and G. E. Jabbour, Adv. Mater., 22, 673 (2010). [DOI: https://doi.org/10.1002/adma.200901141]
  12. J. Lim, J. Kim, Y. J. Yoon, H. Kim, H. G. Yoon, S. N. Lee, and J. Kim, Curr. Appl. Phys., 12, e14 (2012). [DOI: https://doi.org/10.1016/j.cap.2011.04.035]
  13. M. Bissannagari and J. Kim, Ceram. Int., 41, 8023 (2015). [DOI: https://doi.org/10.1016/j.ceramint.2015.02.151]
  14. F.D.M. Fernandez, M. Bissannagari, J. Kim, Ceram. Int., 47, 24693 (2021). [DOI: https://doi.org/10.1016/j.ceramint.2021.05.191]
  15. J. W. Song, Y. S. Kim, Y. H. Yoon, E. S. Lee, C. S. Han, Y. Cho, D. Kim, J. Kim, N. Lee, Y. G. Ko, H. T. Jung, and S. H. Kim, Physica E Low Dimens. Syst. Nanostruct., 41, 1513 (2009). [DOI: https://doi.org/10.1016/j.physe.2009.04.031]
  16. M. Bissannagari, W. Lee, W. Y. Lee, J. H. Jeong, and J. Kim, Adv. Funct. Mater., 27, 1701766 (2017). [DOI: https://doi.org/10.1002/adfm.201701766]
  17. K. Rajaram and J. Kim, Nano Energy, 57, 317 (2019). [DOI: https://doi.org/10.1016/j.nanoen.2018.12.021]
  18. T.T.M. Phan, N. C. Chu, V. B. Luu, H. N. Xuan, D. T. Pham, I. Martin, and P. Carriere, J. Sci-Adv Mater. Dev., 1, 90 (2016). [DOI: https://doi.org/10.1016/j.jsamd.2016.04.005]
  19. V. S. Puli, P. Li, S. Adireddy, and D. B. Chrisey, J. Adv. Dielectr., 5, 1550027 (2015). [DOI: https://doi.org/10.1142/S2010135X15500277]
  20. B. Wague, N. Baboux, P. R. Romeo, Y. Robach, and B. Vilquin, J. Mod. Phys., 11, 509 (2020). [DOI: https://doi.org/10.4236/jmp.2020.114033]
  21. J. Xu, J. Zhai, and X. Yao, J. Alloys Compd., 467, 567 (2009). [DOI: https://doi.org/10.1016/j.jallcom.2007.12.060]
  22. S. H. Yoon, M. Y. Kim, and D. Kim, J. Mater. Chem., C, 8, 9373 (2020). [DOI: https://doi.org/10.1039/D0TC02067B]
  23. F.T. L. Muniz, M.A.R. Miranda, C. Morilla Dos Santos, J. M. Sasaki, Acta Crystallogr. Sect. A, A72, 385 (2016). [DOI: https://doi.org/10.1107/S205327331600365X]
  24. B. K. Tehrani, C. Mariotti, B. S. Cook, L. Roselli, and M. M. Tentzeris, Org. Electron., 29, 135 (2016). [DOI: https://doi.org/10.1016/j.orgel.2015.11.022]
  25. Y. Oh, J. Kim, Y. J. Yoon, H. Kim, H. G. Yoon, S. N. Lee, and J. Kim, Curr. Appl. Phys., 11, S359 (2011). [DOI: https://doi.org/10.1016/j.cap.2010.11.065]
  26. Z. Ma, Y. Ma, Z. Chen, F. Zheng, H. Gao, H. Liu, and H. Chen, Ceram. Int., 44, 4338 (2018). [DOI: https://doi.org/10.1016/j.ceramint.2017.12.027]
  27. F. M. Pontes, E. R. Leite, E. Longo, J. A. Varela, E. B. Araujo, and J. A. Eiras, Appl. Phys. Lett., 76, 2433 (2000). [DOI: https://doi.org/10.1063/1.126367]