DOI QR코드

DOI QR Code

Blast Analysis of Single Degree of Freedom Plant Structures Considering Static Displacement

정적변위를 고려한 플랜트 구조물의 단자유도 폭발 해석

  • Received : 2022.09.05
  • Accepted : 2022.10.05
  • Published : 2022.10.31

Abstract

In this paper, an analysis method that considers the initial static displacement of structural members using an equivalent single-degree-of-freedom system is presented. Newmark's dynamic analysis algorithm was improved to consider the effect of the initial static displacements of structural members. The effect of the initial static displacement on the maximum response according to the assumed duration of the blast load and natural period of the member was investigated. The effects of positive and negative static displacements on the maximum dynamic responses of structural members subjected to a positively applied blast load were also studied. Modified response charts for the shock-type and pressure-type waves are presented so that static displacements can easily be considered. Using a design example, we demonstrate the significance of the modified response chart that considers the static displacement. Based on the results of this study, the maximum response of a the structural member can be easily obtained whilst considering its initial static displacement. The modified response chart presented in this study can be used for the structural design of plants and military facilities.

본 논문에서는 등가 단자유도를 이용하여 구조부재의 정적변위를 고려하는 해석기법을 제시하였다. 기존의 단자유도 비선형 동적 해석 알고리듬을 구조부재의 초기정적변위의 영향을 고려할 수 있도록 개선하였다. 가정된 폭발하중 지속시간과 부재의 고유주기 비에 따라 정적변위가 최대응답에 미치는 영향의 차이와 폭발하중의 방향과 초기변위의 방향에 따른 차이를 확인하였다. 이에 따라 기존의 응답 차트를 정적변위를 고려할 수 있도록 폭발하중의 형태에 따라 각각 제시하였다. 설계 예제를 정적변위가 고려된 응답 차트에 적용하여 부재의 최대 변위를 비교 및 분석하였다. 본 연구의 결과를 통해 초기 정적변위를 고려한 구조부재의 최대응답을 쉽게 산정할 수 있으며 본 연구에서 제시한 응답 차트는 플랜트 또는 군사시설물의 내폭 설계에 활용될 수 있다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(No. 22RMPP-C163162-02).

References

  1. ASCE (2010) Design of Blast-Resistant Buildings in Petrochemical Facilities, American Society of Civil Engineer, Virginia, p.300.
  2. ATC-72-1 (2010) Modeling and Acceptance Criteria for Seismic Design and Analysis of Tall Buildings, Pacific Earthquake Engineering Research Center, California, p.242.
  3. Chopra, A.K. (2014) Dynamics of Structures 4th edition, Prentice Hall, NJ, p.944.
  4. DoD (1999) DoD Ammunition and Explosives Safety Standards, Depart of Defence(DoD), Wahsington, D.C, p.245.
  5. Dragos, J., Wu, C. (2015) Single-Degree-of-Freedom Approach to Incorporate Axial Load Effects on Pressure Impulse Curves for Steel Columns, J. Eng. Mech., 141(1), 04014098. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000818
  6. FEMA 356 (2000) Prestandard and Commentary for Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington, DC, p. 518.
  7. Lee, S.H., Kim, H.S. (2021) Study on the Calculation of the Blast Pressure of Vapor Cloud Explosions by Analyzing Plant Explosion Cases, J. Comput. Struct. Eng. Inst. Korea, 34(1), pp.1-8. https://doi.org/10.7734/COSEIK.2021.34.1.1
  8. MARSH (2016) The 100 Largest Losses 1974-2015, Marsh Ltd., UK, p.44.
  9. NORSOK (2013) Norwegian Standards: Design of Steel Structures (N-004), Standards Norway, Oslo, p.264.
  10. Oswald, C., Bazan, M. (2014) Comparison of SDOF Analysis Results to Test Data for Different Types of Blast Loaded Components, Structure Congress, pp.117-130.
  11. PDC-TR06-08 (2008) Single Degree of Freedom Structural Response Limits for Antiterrorism Design, US Army Corps of Engineers, p.35.
  12. Temash, Y., Jahami, A., Khayib, J., Firat, S. (2017) Single Degree of Freedom Approach of a Reinforced Concrete Beam Subjected to Blast Loading, Inter. Turkish World Eng. and Sci. Congress, Turkey, pp.1-8.
  13. UFC3-340-02 (2008) Structures to Resist the Effects of Accidental Explosions, Depart of Defence (DoD), p.1943.