DOI QR코드

DOI QR Code

침식저항도 차이에 따른 지형발달 및 지형인자에 대한 연구 - 2차원 수치지형발달모형을 이용하여 -

A Theoretical Study on the Landscape Development by Different Erosion Resistance Using a 2d Numerical Landscape Evolution Model

  • 김동은 (한국지질자원연구원 활성지구조연구센터)
  • Kim, Dong-Eun (Active Tectonic Research Center, Korea Institute of Geoscience and Mineral Resources)
  • 투고 : 2022.08.31
  • 심사 : 2022.10.20
  • 발행 : 2022.10.28

초록

구조지형은 기반암 단층과 암석의 경연차와 같은 약대를 따라 풍화, 침식의 프로세스의 영향을 받아 만들어진 지형이다. 지구 조지형은 현재 활동하고 있는 지진, 화산, 단층과 같은 지구조운동으로 인해 만들어진 지형이다. 우리나라와 같이 판의 내부에 위치하여 지구조운동의 영향이 상대적으로 적고 기후적 특성을 고려하면 실제 현장에서 이 둘을 명확하게 구분하는 것은 어렵다. 최근 활성단층 연구의 증가에 따라 지구조지형에 초점을 맞추어 연구가 진행되고 있으나 더 명확한 지구조지형을 분류하기 위해서는 기반암의 특성에 따른 구조지형의 발달 양상에 대한 이해가 필요하며 기반암의 특성만을 따로 비교분석하기에는 현재 지형은 지구조운동과 기후의 영향을 동시에 받았기 때문에 구조적 요인만을 대상으로 하기에는 한계가 있다. 본 연구는 2차원 수치지형발달모형을 이용하여 기후와 지구조운동에 의한 요인을 제한하고, 기반암의 차이에 따른 지형의 시공간적 발달특성에 대해 연구하였다. 기반암 차이에 따른 지형특성을 구분하기 위해 사면·하천과 관련된 지형분석을 하였다. 연구결과 침식가능성이 높은 지형은 평균고도, 기복량, 경사도, 하천차수, 하천경사도지수 모두 낮게 나왔다. 또한 기반암 하천분석 결과 기반암 경계부분에서 천이점이 나왔다. 실제 지형을 연구할 때 지금까지는 지구조운동으로 인한 것인지, 구조적 요인을 받은 것인지 구분할 때 천이점에 있는 기반암의 차이만 고려하였다. 본 연구는 지구조지형과 구조지형을 분류할 때 구조지형으로 분류하기 위해서는 기반암의 차이뿐만 아니라 다양한 지형인자들을 고려하여 종합적으로 판단하여야 할 것임을 시사한다.

A pre-existing landform is created by weathering and erosion along the bedrock fault and the weak zone. A neotectonic landform is formed by neotectonic movements such as earthquakes, volcanoes, and Quaternary faults. It is difficult to clearly distinguish the landform in the actual field because the influence of the tectonic activity in the Korean Peninsula is relatively small, and the magnitude of surface processes (e.g., erosion and weathering) is intense. Thus, to better understand the impact of tectonic activity and distinguish between pre-existing landforms and neotectonic landforms, it is necessary to understand the development process of pre-existing landforms depending on the bedrock characteristics. This study used a two-dimensional numerical landscape evolution model (LEM) to study the spatio-temporal development of landscape according to the different erodibility under the same factors of climate and the uplift rate. We used hill-slope indices (i.e., relief, mean elevation, and slope) and channels (i.e., longitudinal profile, normalized channel steepness index, and stream order) to distinguish the difference according to different bedrocks. As a result of the analysis, the terrain with high erosion potential shows low mean elevation, gentle slope, low stream order, and channel steepness index. However, the value of the landscape with low erosion potential differs from that with high erodibility. In addition, a knickpoint came out at the boundary of the bedrock. When researching the actual topography, the location around the border of difference in bedrock has only been considered a pre-existing factor. This study suggested that differences in bedrock and various topographic indices should be comprehensively considered to classify pre-existing and active tectonic topography.

키워드

과제정보

이 연구는 한국지질자원연구원의 2020년 기본사업 '판내부 활성지구조특성 연구 및 단층분절모델 개발'(GP2020-014)의 지원을 받아 수행되었습니다.

참고문헌

  1. Bursztyn, N., Pederson, J.L., Tressler, C., Mackley, R.D. and Mitchell, K.J. (2015) Rock strength along a fluvial transect of the Colorado Plateau-quantifying a fundamental control on geomorphology. Earth and Planetary Science Letters, v.429, p.90-100. doi: 10.1016/j.epsl.2015.07.042
  2. Cheon, Y., Choi, J.-H., Kim, N., Lee, H., Choi, I., Rockwell, T.K., Lee, S.R., Ryoo, C.-R, Choi, H. and Lee, T.-H. (2020). Late Quaternary transpressional earthquakes on a long-lived intraplate fault: A case study of the Southern Yangsan Fault, SE Korea. Quaternary International, v.553, p.132-143. doi: 10.1016/j.quaint.2020.07.025
  3. Choi, J.H., Kim, J.W., Murray, A.S., Hong, D.G., Chang, H.W. and Cheong, C.S. (2009) OSL dating of marine terrace sediments on the southeastern coast of Korea with implications for Quaternary tectonics. Quaternary International, v.199, p.3-14. doi: 10.1016/j.quaint.2008.07.009
  4. Choi, S.-J., Jeon, J.-S., Song, K.-Y., Kim, H.-C., Kim, Y.-H., Choi, P.-Y., Chwae, U.C., Han, J.-G., Ryoo, C.-R., Sun, C.-G., Jeon, M.S., Kim, G.-Y., Kim, Y.-B., Lee, H.-J., Shin, J.S., Lee, Y.-S. and Kee, W.-S. (2012) Active faults and seismic hazard map. NEMA, Seoul, p.882
  5. Clayton, K. and Shamoon, N. (1998) A new approach to the relief of Great Britain: II. A classification of rocks based on relative resistance to denudation. Geomorphology, v.25(3-4), p.155-171. doi: 10.1016/S0169-555X(98)00038-5
  6. Flint, J.J. (1974) Stream gradient as a function of order, magnitude, and discharge. Water Resources Research, v.10, p.969-973. doi: 10.1029/WR010i005p00969
  7. Forte, A.M., Yanites, B.J. and Whipple, K.X. (2016) Complexities of landscape evolution during incision through layered stratigraphy with contrasts in rock strength. Earth Surface Processes and Landforms, v.41(12), p.1736-1757. doi: 10.1002/esp.3947
  8. Han, J.-G. and Choi, S.-J. (2011) Case study of Fault Based on Drainage System Analysis in the Namdae Stream, Uljin Area. Econ. Environ. Geol., v.44(5), p.399-412. (in Korean with English abstract) doi: 10.9719/EEG.2011.44.5.399
  9. Howard, A.D. and Kirby, G. (1983) Channel change in badland. Geological Society America Bulletin, v.94, p.739-752. doi: 10.1130/0016-7606(1983)94%3C739:CCIB%3E2.0.CO;2
  10. Hugget, R.J. (2011) Fundamentals of Geomorphology 3rd Edition. e United Kingdom: Routledge Taylor and Francis Group.
  11. Kim, D.E. and Seong, Y. (2021) Cumulative Slip Rate of the Southern Yangsan Fault from Geomorphic Indicator and Numerical Dating. The Korean Geographical Society, v.56(2), p.201-213. doi: 10.22776/kgs.2021.56.2.201
  12. Kim, Y.-S., Son, M., Choi, J-H., Choi, J-H., Seong, Y.B. and Lee, J. (2020) Processes and challenges for the production of Korean active faults map. Journal of the Geological Society of Korea. v.56(2), p.113-134. doi: 10.14770/jgsk.2020.56.2.113
  13. Kim, J.W., Chang, H.W., Choi, J.H., Choi, K.H. and Byun, J. (2007a) Optically stimulated luminescence dating on the marine terrace deposits of Hujeong-Jukbyeon Region in Uljin Korea. J. Korean Geomorphol. Assoc., v.14, p.15-27. (in Korean with English abstract)
  14. Kim, J.W., Chang, H.W., Choi, J.H., Choi, K.H. and Byun, J. (2007b) Landform characteristics of coastal terraces and optically stimulated luminescence dating on the terrace deposits in Yangnam and Yangbuk area of the Gyeongju City, South Korea. J. Korean Geomorphol. Assoc., v.14, p.1-14. (in Korean with English abstract)
  15. Kirby, E. and Whipple, K.X. (2012) Expression of active tectonics in erosional landscapes. Journal of Structural Geology, v.44, p.54-75. doi: 10.1016/j.jsg.2012.07.009
  16. Kyung, J.B. (2003) Paleoseismology of the Yangsan fault, southeastern part of the Korean peninsula. Annals of Geophysics, v.46(5). doi: 10.4401/ag-3465
  17. Lee, G.-R. (2014) Characteristics and classification of landform relieves on mountains and valleys with bedrock types. Journal of the Korean Geomorphological Association, v.21, p.1-17. (in Korean with English abstract) doi: 10.18339/jkga.2014.21.4.1
  18. Lee, C.H., Seong, Y.B., Oh, J.-S. and Kim, D.E. (2019) Tectonic Geomorphology on Yugye-Bogyeongsa Area of Yangsan Fault Zone. Journal of the Korean Geomorphological Association, v.26, p.93-106. (in Korean with English abstract) doi: 10.16968/JKGA.26.1.93
  19. Meybeck, M. (1987) Global chemical weathering of surficial rocks estimated from river dissolved loads. American Journal of Science, v.287(5), p.401-428. doi: 10.2475/ajs.287.5.401
  20. Oh, J.-S. and Kim, D.E. (2019) Lineament Extraction and Its Comparison Using DEMs based on LiDAR, Digital Topographic Map, and Aerial Photo in the Central Segment of Yangsan Fault. The Korean Geographical Society, v.54, p.507-525.
  21. Park, H.-J., Han, R. and Gu, D. (2020) Structures and deformation characteristics of the active fault, Hwalseongri area, Gyeongju, Korea. Journal of the Geological Society of Korea, v.56, p.703-726. (in Korean with English abstract) doi: 10.14770/jgsk.2020.56.6.703
  22. Scharf, T.E., Codilean, A.T., De Wit, M., Jansen, J.D. and Kubik, P.W. (2013) Strong rocks sustain ancient postorogenic topography in southern Africa. Geology, v.41, p.331-334. doi: 10.1130/G33806.1
  23. Sklar, L.S. and Dietrich, W.E. (2001) Sediment and rock strength controls on river incision into bedrock. Geology, v.29(12), p.1087-1090. doi: 10.1130/0091-7613(2001)029%3C1087:SARSCO%3E2.0.CO;2
  24. Stock, J.D. and Montgomery, D.R. (1999) Geologic constraints on bedrock river incision using the stream power law. Journal of Geophysical Research: Solid Earth, v.104(B3), p.4983-4993. doi: 10.1029/98JB02139
  25. Whipple, K.X. and Tucker, G.E. (1999) Dynamics of the streampower river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs. Journal of Geophysical Research: Solid Earth, v.104(B8), p.17661-17674. doi: 10.1029/1999JB900120
  26. Yanites, B.J., Becker, J.K., Madritsch, H., Schnellmann, M. and Ehlers, T.A. (2017) Lithologic effects on landscape response to base level changes: a modeling study in the context of the Eastern Jura Mountains, Switzerland. Journal of Geophysical Research: Earth Surface, v.122, p.2196-2222. doi: 10.1002/2016JF004101
  27. Zondervan, J.R., Whittaker, A.C., Bell, R.E., Watkins, S.E., Brooke, S.A. and Hann, M.G. (2020) New constraints on bedrock erodibility and landscape response times upstream of an active fault. Geomorphology, v.351, 106937. doi: 10.1016/j.geomorph.2019.106937