참고문헌
- Avrova AO, Hyman LJ. Toth RL and Toth IK. (2002). Application of amplified fragment length polymorphism fingerprinting for taxonomy and identification of the soft rot bacteria Erwinia carotovora and Erwinia chrysanthemi. Appl Environ Microbio 68: 1499-1508. https://doi.org/10.1128/AEM.68.4.1499-1508.2002
- Bunbury-Blanchette AL and Walker AK. (2019). Trichoderma species show biocontrol potential in dual culture and greenhouse bioassays against Fusarium basal rot of onion. Bio Control 130: 127-135. https://doi.org/10.1016/j.biocontrol.2018.11.007
- Casasnovas F, Fantini EN, Palazzini JM, Giaj-Merlera G, Chulze SN, Reynoso MM and Torres AM. (2013). Development of amplified fragment length polymorphism (AFLP)-derived specific primer for the detection of Fusarium solani aetiological agent of peanut brown root rot. J Appl Microbiol. 114: 1782-1792. https://doi.org/10.1111/jam.12183
- Fletcher JT. (1990). Trichoderma and Penicillium diseases of Agaricus bisporus. A literature review for the Horticultural Development Council. London: ADAS.
- Janssen P, Coopman R, Huys G, Swings J, Bleeker M, Vos P, Zabeau M and Kersters K. (1996). Evaluation of the DNA fingerprinting method AFLP as a new tool in bacterial taxonomy. Microbiology, 142: 1881-1893. https://doi.org/10.1099/13500872-142-7-1881
- Lee SW and Cho YS. (2021). Historical and current perspective of oyster mushroom (Pleurotus ostreatus) cultivation in South Korea. Asian j adv agric. 17: 33-41.
- Ospina-Giraldo MD, Royse DJ, Thon M R, Chen X & Romaine CP. (1998). Phylogenetic relationships of Trichoderma harzianum causing mushroom green mold in Europe and North America to other species of Trichoderma from world-wide sources. Mycologia, 90(1), 76-81. https://doi.org/10.1080/00275514.1998.12026881
- Park MS, Bae KS, and Yu SH. (2006). Two new species of Trichoderma associated with green mold of oyster mushroom cultivation in Korea. Mycobiology, 34: 111-113. https://doi.org/10.4489/MYCO.2006.34.3.111
- Park MS, Seo GS, Lee KH, Bae KS and Yu SH. (2005a). Morphological and cultural characteristics of Trichoderma spp. associated with green mold of oyster mushroom in Korea. Plant Pathol J. 21: 221-228. https://doi.org/10.5423/PPJ.2005.21.3.221
- Park MS, Seo GS, Bae KS and Yu SH. (2005b). Characterization of Trichoderma spp. associated with green mold of oyster mushroom by PCR-RFLP and sequence analysis of ITS regions of rDNA. Plant Pathol J. 21: 229-236. https://doi.org/10.5423/PPJ.2005.21.3.229
- Rogers SO and Bendich AJ. (1994). Extraction of total cellular DNA from plants, algae and fungi. In: Gelvin S. B. and R. A. Schilperoort, editors. Plant molecular biology manual. Dordrecht: Springer Netherlands. pp. 183-190.
- Rozen S. and Skaletsky H. (2000). Primer3 on the WWW for general users and for biologist programmers. In Bioinformatics methods and protocols. Humana Press, Totowa, NJ. pp. 365-386.
- Samuels GJ. (1996). Trichoderma: a review of biology and systematics of the genus. Myco Res. 100: 923-935. https://doi.org/10.1016/S0953-7562(96)80043-8
- Samuels GJ. Dodd SL, Gams W, Castlebury LA and Petrini O. (2002). Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus . Mycologia, 94: 146-170. https://doi.org/10.1080/15572536.2003.11833257
- Sivasithamparam K and Ghisalberti EL. (1998). Secondary metabolism in Trichoderma and Gliocladium. pp 139-191 in: Trichoderma and Gliocladium, Vol. 1. C. P. Kubicek
- Song ES, Kim SY, Noh TH, Cho H, Chae SC and Lee BM. (2014). PCR-based assay for rapid and specific detection of the new Xanthomonas oryzae pv. oryzae K3a race using an AFLP-derived marker. J Microbiol Biotechnol. 24: 732-739. https://doi.org/10.4014/jmb.1311.11005
- Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J and Kuiper M . (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23: 4407-4414. https://doi.org/10.1093/nar/23.21.4407