DOI QR코드

DOI QR Code

Depressurization Modeling Methodology for Thrust Variable Solid Propulsion System

고체추진 추력조절 시스템에 적용가능한 감압률 모델링 방법론 연구

  • Yoon, Jisu (1st R&D Institute, Agency for Defense Development) ;
  • Heo, Junyoung (1st R&D Institute, Agency for Defense Development) ;
  • Oh, Seokjin (1st R&D Institute, Agency for Defense Development)
  • Received : 2022.06.01
  • Accepted : 2022.08.15
  • Published : 2022.08.31

Abstract

The depressurization rate in a thrust variable solid rocket motor is the major factor that has the greatest influence on the thrust termination performance. In this study, the depressurization rates range of model solid rocket motor was identified and major factors affecting the depressurization rate were found. It is important for actual system design to understand the depressurization rate of the system that can satisfy the target performance as well as the extinguishing characteristics of the solid propellant. The methodology for obtaining the depressurization rate model in this study is considered to be applicable to the optimal design of the thrust terminable propulsion system.

추력조절이 가능한 고체추진기관에서 감압률은 추력중단 성능에 가장 큰 영향을 미치는 인자이다. 본 연구에서는 몇 종류의 추진기관에서 구현 가능한 감압률의 범위를 파악하였으며 이를 통하여 추진기관 감압률에 미치는 주요 인자를 도출하였다. 추진제에 대한 소화특성 파악뿐만 아니라 추진기관의 목표성능을 만족할 수 있는 감압률을 파악하는 것이 실제 추력조절 시스템 설계에 중요하며 본 연구에서와 같은 감압률 모델획득 방법론은 추력중단이 필요한 고체추진기관 설계에 적용 가능할 것으로 판단된다.

Keywords

References

  1. "Operational Fires(OpFires)", retrieved 3 Jul 2022, from https://www.darpa.mil/program/operational-fires.
  2. Sayles D.C. and Levinsky C.T., "Advanced Pintle-Controlled Motor with Thrust Vector Control," SAE International, Vol. 30, No. 3, pp. 2557-2564, 1971.
  3. Ervin W.D. and Kunz C.H., "Altitude test of the aerojet modified heavyweight full-scale controllable solid propellant rocket motor," AEDC-TR-73-189, 1973.
  4. Merkle, C.L., Turk, S.L. and Summerfield, M., "Extinguishment of Solid Propellants by Rapid Depressurization," AD 697 611, 1969.
  5. Clepluch, C.C., "Effect of Rapid Pressure Decay on Solid Propellant Combustion," ARS Journal, Vol. 31, No. 11, pp. 1584-1586, 1961.
  6. Jeong, H.G. and Lee, C.J., "Dynamic Extinction of Solid Propellants by Depressurization of Combustion Chamber," Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 30, No. 2, pp. 91-97, 2002.
  7. Donde, R., Riva, G. and Luca, De., "Experimental and Theoretical Extinction of Solid Rocket Propellants by Fast Depressurization," Acta Astraunatica, Vol. 11, No. 9, pp. 569-576, 1984. https://doi.org/10.1016/0094-5765(84)90029-8
  8. Ye, R., Yu, Y. and Cao, Y., "Experimental study of Transient combustion characteristics of AP/HTPB based bleed propellant under rapid pressure drop," Combust. Sci. Technol., Vol. 187, No. 3, pp. 445-457, 2015. https://doi.org/10.1080/00102202.2014.951121
  9. Choi, J.S., Lee, C.H., Lim, J.I. and Lee, H.J., "A Study on Characteristic of Extinguishment for Solid Propellants Composition by Rapid Depressurization," Journal of the Korean Society of Propulsion Engineers, Vol. 21, No. 5, pp. 37-45, 2017. https://doi.org/10.6108/KSPE.2017.21.5.037
  10. Kim, D.Y., Yoon, J.S., Lee, K.J. and Yoon, W.S., "Extinction Characteristics of AP/HTPB Composite Solid Propellant by Rapid Depressurization," Journal of the Korean Society of Propulsion Engineers, Vol. 23, No. 2, pp. 21-26, 2019.