참고문헌
- Abou-Elfath, H. (2017), "Evaluating the ductility characteristics of self-centering buckling-restrained shape memory alloy braces", Smart Mater. Struct., 26(5), 34-54. https://doi.org/10.1088/1361-665X/aa6abc
- Abouali, S., Shahverdi, M., Ghassemieh, M. and Motavalli, M. (2019), "Nonlinear simulation of reinforced concrete beams retrofitted by near-surface mounted iron-based shape memory alloys", Eng. Struct., 187, 133-148. https://doi.org/10.1016/j.engstruct.2019.02.060.
- Izadi, M., Motavalli, M. and Ghafoori, E. (2019), "Iron-based shape memory alloy (Fe-SMA) for fatigue strengthening of cracked steel bridge connections", Construct. Build. Mater., 10(227)116800. https://doi.org/10.1016/j.conbuildmat.2019.116800
- Aizawa, S., Kakizawa, T. and Higasino, M. (1998), "Case studies of smart materials for civil structures", Smart Mater. Struct., 7(5), 61-77.
- Ayyub, B.M., Sohn, Y.G. and Saadatmanesh, H. (1990), "Prestressed composite girders under positive moment", J. Struct. Eng., 116(11), 2931-2951. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:11(2931).
- Belletti, B. and Gasperi, A. (2010), " Behavior of prestressed steel beams", J. Struct. Eng., 136(9), 1131-1139. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000208.
- Chataigner, S., Benzarti, K., Foret, G., Caron, J.F., Gemignani, G., Brugiolo, M. and Lehmann, F. (2018), "Design and testing of an adhesively bonded CFRP strengthening system for steel structures", Eng. Struct., 177, 556-565. https://doi.org/10.1016/j.engstruct.2018.10.004.
- Chataigner, S., Whabeh, M., Sanchez, D.G., Benzarti, K., Birtel, V., Fischer, M. and Zalbide, M. (2020), "Fatigue strengthening of steel bridges with adhesively bonded CFRP laminates: Case study", J. Compos. Construct., 24(3), 12. https://dx.doi.org/10.1061/(ASCE)CC.1943-5614.0001014.
- Chowdhury, M.A., Rahmzadeh, A. and Alam, A.S. (2019), "Improving the seismic performance of post-tensioned selfcentering connections using SMA angles or end plates with SMA bolts", Smart Mater. Struct., 28(7), 34-56.
- Dall'Asta, A. and Zona, A. (2005), "Finite element model for externally prestressed composite beams with deformable connection", J. Struct. Eng., 131(5), 706-714. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:5(706).
- Dehghani, A. and Aslani, F. (2020), "The effect of shape memory alloy, steel, and carbon fibres on fresh, mechanical, and electrical properties of cementitious composites", Cement Concrete Compos., 11, 103659. https://doi.org/10.1016/j.cemconcomp.2020.103659.
- Duarte, A.P.C., Silva, B.A., Silvestre, N., De Brito, J., Julio, E. and Castro, J.M. (2016), "Tests and design of short steel tubes filled with rubberised concrete", Eng. Struct., 112, 274-286. https://doi.org/10.1016/j.engstruct.2016.01.018
- El-Zohairy, A. and Salim, H. (2017), "Parametric study for posttensioned composite beams with external tendons", Adv. Struct. Eng., 20(10), 1433-1450. https://doi.org/10.1177/1369433216684352.
- Elbahy, Y.I. and Youssef, M.A. (2019), "Flexural behaviour of superelastic shape memory alloy reinforced concrete beams during loading and unloading stages", Eng. Struct., 181, 246-259. https://doi.org/10.1016/j.engstruct.2018.12.001.
- Eshghinejad, A. (2012), Finite Element Study of a Shape Memory Alloy Bone Implant, University of Toledo.
- Fang, C., Zheng, Y., Chen, J., Yam, M.C. and Wang, W. (2019), "Superelastic NiTi SMA cables: Thermal-mechanical behavior, hysteretic modelling and seismic application", Eng. Struct., 183, 533-549. https://doi.org/10.1016/j.engstruct.2019.01.049.
- Franco, N., Biscaia, H. and Chastre, C. (2018), "Experimental and numerical analyses of flexurally-strengthened concrete T-beams with stainless steel", Eng. Struct., 172, 981-996. https://doi.org/10.1016/j.engstruct.2018.06.077.
- Fugazza, D. (2005), "Experimental investigation on the cyclic properties of superelastic NiTi shape-memory alloy wires and bars", Individual study, European School for Advanced Studies in Reduction of Seismic Risk ROSE School, Pavia, Italy.
- Ghafoori, E. (2015), Fatigue Strengthening of Metallic Members Using Un-Bonded and Bonded CFRP Laminates, ETH Zurich.
- Ghafoori, E., Hosseini, A., Al-Mahaidi, R., Zhao, X.L. and Motavalli, M. (2018), "Prestressed CFRP-strengthening and long-term wireless monitoring of an old roadway metallic bridge", Eng. Struct., 176, 585-605. https://doi.org/10.1016/j.engstruct.2018.09.042.
- Ghafoori, E. and Motavalli, M. (2015), "Innovative CFRPprestressing system for strengthening metallic structures", J. Compos. Construct., 19(6), 43-87. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000559.
- Ghannam, M., Mahmoud, N.S., Badr, A. and Salem, F.A. (2017), "Effect of post tensioning on strengthening different types of steel frames", J. King Saud Univ. Eng. Sci., 29(4), 329-338. https://doi.org/10.1016/j.jksues.2016.07.001.
- Haskett, M., Oehlers, D.J. and Ali, M.M. (2008), "Local and global bond characteristics of steel reinforcing bars", Eng. Struct., 30(2), 376-383. https://doi.org/10.1016/j.engstruct.2007.04.007.
- Hosseini, A., Ghafoori, E., Al-Mahaidi, R., Zhao, X.L. and Motavalli, M. (2019), "Strengthening of a 19th-century roadway metallic bridge using nonprestressed bonded and prestressed unbonded CFRP plates", Construct. Build. Mater., 209, 240-259. https://doi.org/10.1016/j.conbuildmat.2019.03.095.
- Maleki, F.K. and Toygar, M.E. (2019), "The fracture behavior of sandwich composites with different core densities and thickness subjected to mode I loading at different temperatures", Mater. Res. Express, 6(4), 045314. https://doi.org/10.1088/2053-1591/aafc02
- Hosseini, A., Ghafoori, E., Motavalli, M., Nussbaumer, A., Zhao, X. L., Al-Mahaidi, R. and Terrasi, G. (2019), "Development of prestressed unbonded and bonded CFRP strengthening solutions for tensile metallic members", Eng. Struct., 181, 550-561. https://doi.org/10.1016/j.engstruct.2018.12.020.
- Hosseini, A., Michels, J., Izadi, M. and Ghafoori, E. (2019), "A comparative study between Fe-SMA and CFRP reinforcements for prestressed strengthening of metallic structures", Construct. Build. Mater., 226, 976-992. https://doi.org/10.1016/j.conbuildmat.2019.07.169.
- Hu, J.W. and Noh, M.H. (2015), "Seismic response and evaluation of SDOF self-centering friction damping braces subjected to several earthquake ground motions", Adv. Mater. Sci. Eng., 2015. https://doi.org/10.1155/2015/397273.
- Imran, M., Mahendran, M. and Keerthan, P. (2018), "Experimental and numerical investigations of CFRP strengthened short SHS steel columns", Eng. Struct., 175, 879-894. https://doi.org/10.1016/j.engstruct.2018.08.042.
- Islam, M., Ali, R.B. and Billah, M. (2019), "Strengthening techniques of steel structure: An overview", World Sci. News, 118, 181-193.
- Izadi, M., Ghafoori, E., Hosseini, A., Motavalli, M. and Maalek, S. (2017), "Development of anchorage systems for strengthening of steel plates with iron-based shape memory alloy strips", In Fourth Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures (SMAR 2017) (No. CONF).
- Izadi, M.R., Ghafoori, E., Shahverdi, M., Motavalli, M. and Maalek, S. (2018), "Development of an iron-based shape memory alloy (Fe-SMA) strengthening system for steel plates", Eng. Struct., 174, 433-446. https://doi.org/10.1016/j.engstruct.2018.07.073.
- Izadi, M., Motavalli, M. and Ghafoori, E. (2019), "Iron-based shape memory alloy (Fe-SMA) for fatigue strengthening of cracked steel bridge connections", Construct. Build. Mater., 227, 116800. https://doi.org/10.1016/j.conbuildmat.2019.116800.
- Jahanghiry, R., Yahyazadeh, R., Sharafkhani, N. and Maleki, V.A. (2016), "Stability analysis of FGM microgripper subjected to nonlinear electrostatic and temperature variation loadings", Sci. Eng. Compos. Mater., 23(2), 199-207. https://doi.org/10.1515/secm-2014-0079.
- Kambal, M.E.M. and Jia, Y. (2018), "Theoretical and experimental study on flexural behavior of prestressed steel plate girders", J. Construct. Steel Res., 142, 5-16. https://doi.org/10.1016/j.jcsr.2017.12.007.
- Kazem, H., Zhang, Y., Rizkalla, S., Seracino, R. and Kobayashi, A. (2018), "CFRP shear strengthening system for steel bridge girders", Eng. Struct., 175, 415-424. https://doi.org/10.1016/j.engstruct.2018.08.038.
- Li, H. N., Liu, M.M. and Fu, X. (2018), "An innovative recentering SMA-lead damper and its application to steel frame structures", Smart Mater. Struct., 27(7), 075029. https://doi.org/10.1088/1361-665X/aac28f
- Ghaderi, M., Ghaffarzadeh, H. and Maleki, V.A. (2015), "Investigation of vibration and stability of cracked columns under axial load", Earthq. Struct., 9(6), 1181-1192. https://doi.org/10.12989/eas.2015.9.6.1181.
- Maleki, V.A. and Mohammadi, N. (2017), "Buckling analysis of cracked functionally graded material column with piezoelectric patches", Smart Mater. Struct., 26(3), 65-72.
- Martinelli, E., Hosseini, A., Ghafoori, E. and Motavalli, M. (2019), "Behavior of prestressed CFRP plates bonded to steel substrate: Numerical modeling and experimental validation", Compos. Struct., 207, 974-984. https://doi.org/10.1016/j.compstruct.2018.09.023.
- Moradi, S. and Burton, H.V. (2018), "Response surface analysis and optimization of controlled rocking steel braced frames", Bull. Earthq. Eng., 16, 4861-4892. https://doi.org/10.1007/s10518-018-0373-1.
- Ozbek, E., Aykac, B. and Aykac, S. (2019), "The effects of brick walls strengthened with perforated steel plates on frame behavior", Eng. Struct., 189, 62-76. https://doi.org/10.1016/j.engstruct.2019.03.080.
- Ozcatalbas, Y. and Ozer, A. (2007), "Investigation of fabrication and mechanical properties of internally prestressed steel I beam", Mater. Des., 28(6), 1988-1993. https://doi.org/10.1016/j.matdes.2006.04.007.
- Park, S., Kim, T., Kim, K. and Hong, S.N. (2010), "Flexural behavior of steel I-beam prestressed with externally unbonded tendons", J. Construct. Steel Res., 66(1), 125-132. https://doi.org/10.1016/j.jcsr.2009.07.013.
- Pisani, M.A. (1998), "A numerical survey on the behaviour of beams pre-stressed with FRP cables", Construct. Build. Mater., 12(4), 221-232. https://doi.org/10.1016/S0950-0618(97)00081-0.
- Ravi, V. and Krishnan, P.A. (2019), "Effect of replacing steel with shape memory alloy in shear wall systems", Mater. Today, 1(11), 1088-1093. https://doi.org/10.1016/j.matpr.2018.12.043.
- Ren, Y., Wang, Y., Wang, B., Ban, H., Song, J. and Su, G. (2018), "Flexural behavior of steel deep beams prestressed with externally unbonded straight multi-tendons", Thin-Walled Struct., 131, 519-530. https://doi.org/10.1016/j.tws.2018.07.022.
- Saadatmanesh, H., Albrecht, P. and Ayyub, B.M. (1989), "Experimental study of prestressed composite beams", J. Struct. Eng., 115(9), 2348-2363. https://doi.org/10.1061/(ASCE)0733-9445(1989)115:9(2348).
- Sayyaadi, H., Zakerzadeh, M.R. and Salehi, H. (2012), "A comparative analysis of some one-dimensional shape memory alloy constitutive models based on experimental tests", Scientia Iranica, 19(2), 249-257. https://doi.org/10.1016/j.scient.2012.01.005.
- Song, G., Ma, N. and Li, H.N. (2006), "Applications of shape memory alloys in civil structures", Eng. Struct., 28(9), 1266-1274. https://doi.org/10.1016/j.engstruct.2005.12.010.
- Tamai, H. and Kitagawa, Y. (2002), "Pseudoelastic behavior of shape memory alloy wire and its application to seismic resistance member for building", Comput. Mater. Sci., 25(1-2), 218-227. https://doi.org/10.1016/S0927-0256(02)00266-5.
- Tao, Z., Uy, B., Liao, F. Y. and Han, L.H. (2011), "Nonlinear analysis of concrete-filled square stainless steel stub columns under axial compression", J. Construct. Steel Res., 67(11), 1719-1732. https://doi.org/10.1016/j.jcsr.2011.04.012.
- Taoum, A., Jiao, H. and Holloway, D. (2015), "Upgrading steel Ibeams using local post-tensioning", J. Construct. Steel Res., 113, 127-134. https://doi.org/10.1016/j.jcsr.2015.06.012.
- Toygar, M.E., Tee, K.F., Maleki, F.K. and Balaban, A.C. (2019), "Experimental, analytical and numerical study of mechanical properties and fracture energy for composite sandwich beams", J. Sandw. Struct. Mater., 21(3), 1167-1189. https://doi.org/10.1177/1099636217710003.
- Varughese, K. and El-Hacha, R. (2020), "Design and behaviour of steel braced frame reinforced with NiTi SMA wires", Eng. Struct., 212, 110502. https://doi.org/10.1016/j.engstruct.2020.110502.
- Varughese, K.A. (2019), Performance of Steel Braced Frame Reinforced with Shape Memory Alloy Wires, Schulich School of Engineering.
- Wang, B., Jiang, H. and Wang, J. (2019), "Numerical simulation and behavior insights of steel columns with SMA bolts towards earthquake resilience", J. Construct. Steel Res., 161, 285-295. https://doi.org/10.1016/j.jcsr.2019.07.011.
- Wang, W., Fang, C., Yang, X., Chen, Y., Ricles, J. and Sause, R. (2017), "Innovative use of a shape memory alloy ring spring system for self-centering connections", Eng. Struct., 153, 503-515. https://doi.org/10.1016/j.engstruct.2017.10.039.
- Wu, C., He, L., Ghafoori, E. and Zhao, X.L. (2018), "Torsional strengthening of steel circular hollow sections (CHS) using CFRP composites", Eng. Struct., 171, 806-816. https://doi.org/10.1016/j.engstruct.2018.06.014.
- Xu, F., Zhang, X. and Zhang, H. (2018), "A review on functionally graded structures and materials for energy absorption", Eng. Struct., 171, 309-325. https://doi.org/10.1016/j.engstruct.2018.05.094.
- Xu, X., Cheng, G. and Zheng, J. (2018), "Tests on pretrained superelastic NiTi shape memory alloy rods: towards application in self-centering link beams", Adv. Civil Eng., 2018. https://doi.org/10.1155/2018/2037376.
- Xu, X., Tu, J., Cheng, G., Zheng, J. and Luo, Y. (2019), "Experimental study on self-centering link beams using posttensioned steel-SMA composite tendons", J. Construct. Steel Res., 155, 121-128. https://doi.org/10.1016/j.jcsr.2018.12.026.
- Xu, X., Zhang, Y. and Luo, Y. (2016), "Self-centering modularized link beams with post-tensioned shape memory alloy rods", Eng. Struct., 112, 47-59. https://doi.org/10.1016/j.engstruct.2016.01.006.
- Xu, X., Zheng, Y. and Luo, Y. (2018), "Self-centering links using post-tensioned composite tendons", Adv. Struct. Eng., 21(9), 1302-1312. https://doi.org/10.1177/1369433217742523.
- Ye, H., Li, C., Pei, S., Ummenhofer, T. and Qu, H. (2018), "Fatigue performance analysis of damaged steel beams strengthened with prestressed unbonded CFRP plates", J. Bridge Eng., 23(7), 04018040. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001251
- Zhou, B., Yoon, S. H. and Leng, J.S. (2009), "A three-dimensional constitutive model for shape memory alloy", Smart Mater. Struct., 18(9), 095016. https://doi.org/10.1088/0964-1726/18/9/095016
- Wang, Y., Aslani, F. and Liu, Y. (2020), "The effect of tensile and bond characteristics of NiTi shape memory alloy, steel and polypropylene fibres on FRSCC beams under three-point flexural test", Construct. Build. Mater., 233, 117333. https://doi.org/10.1016/j.conbuildmat.2019.117333.