DOI QR코드

DOI QR Code

Safety Assessment of Bifidobacterium breve BB077 as Probiotics

프로바이오틱스 Bifidobacterium breve BB077 안전성 평가

  • Received : 2022.06.30
  • Accepted : 2022.10.13
  • Published : 2022.10.30

Abstract

Probiotics are live microorganisms that confer health benefits onto the host when administered at adequate doses. Most widely used probiotics, such as lactobacilli and bifidobacteria, are known to be elements of healthy gut microflora and hence are not considered a threat to the host. However, probiotics may pose a risk in certain populations with compromised immune systems or defects in gut barrier functions. Herein, we evaluated the safety of Bifidobacterium breve BB077, according to the safety evaluation guidelines for probiotics produced by the National Institute of Food and Drug Safety Evaluation (NIFDS). The results show that B. breve BB077 is both non-hemolytic and non-cytolytic. In contrast, B. breve BB077 exhibited higher streptomycin and tetracycline resistance than the suggested NIFDS standard cut-off values. Hence, a genetic analysis of the streptomycin and tetracycline resistance genes was performed to determine the origin of antimicrobial resistance. Streptomycin and tetracycline resistance was shown have arisen from chromosomal mutations and considered intrinsic to the taxonomic group. In conclusion, the B. breve BB077 strain might be safe for human consumption.

프로바이오틱스가 널리 사용됨에 따라 European Food Safety Authority (EFSA)와 식품의약품안전평가원이 제시하는 프로바이오틱스 안전성 평가 가이드라인에 준수하여 B. breve BB077의 안전성을 평가하였다. 본 실험에 사용한 B. breve BB077 균주는 용혈성이 발생하지 않았으며, 독소를 거의 생성하지 않았음을 확인하였다. 항생제 내성 평가에서는 7종의 항생제에서는 EFSA 권고 cut-off value 보다 낮은 항생제 내성을 보였으며, 2종의 항생제인 streptomycin와 tetracycline에서는 cut-off value 보다 높은 항생제 내성을 보였다. streptomycin, tetracycline에 대한 내성 결정인자는 B. breve 종의 공통 유전적 특징으로 외부로부터 전달 받은 내성이 아닌 자연돌연변이에 의한 획득내성이기에 사용에 안전한 균주임을 확인하였다.

Keywords

References

  1. Scott, K.P., Antoine, J-M., Midtvedt, T., Hemert, S.V., Manipulating the gut microbiota to maintain health and treat disease. Microb. Ecol. Health Dis., 26 (2015).
  2. Kerry, G.R., Patra, J.K., Gouda, S., Park, Y., Shin, H.S, Das, G., Benefaction of probiotics for human health: A review. J. Food Drug Anal., 26, 927-939 (2018). https://doi.org/10.1016/j.jfda.2018.01.002
  3. Chon, J.W., Seo, K.H., Bae, D.Y., Jeong, D.K., Song, K.Y., Status and Prospect of Lactic Acid Bacteria with Antibiotic Resistance. J. Dairy Sci. Biotechnol., 38, 70-88 (2020). https://doi.org/10.22424/jdsb.2020.38.2.70
  4. Yasmin, I., Saeed, M., Khan, W.A., Khaliq, A., Chughtai, M., Iqbal, R., Tehseen, S., Naz, S., Liaqat, A., Mehmood, T., Ahsan, S., Tanweer, S., In vitro probiotic potential and safety evaluation (Hemolytic, Cytotoxic Activity) of Bifidobacterium strains isolated from raw camel milk., Microorganism. 8, 354 (2020). https://doi.org/10.3390/microorganisms8030354
  5. National Institute of Food and Drug Safety Evaluation, (2019). Guide to preparation of sub-mission data for recognition of functional ingredients for health supplements. Retrieved from https://www.nifds.go.kr/brd/m_15/view.do?seq=12803&srchFr=&srchTo=&srchWord=%EA%B8%B0%EB%8A%A5%EC%84%B1%26nbsp%EC%9B%90%EB%A3%8C&srchTp=0&itm_seq_2=0&multi_itm_seq=0&company_cd=&company_nm=&page=1.
  6. Cyril, S., Stulberg, Ph.D., Wolf, W., Zuelzer, M.D., Anthony, C., Nolke, M.D., Escherichia Coli O127:B8, a Pathogenic Strain Causing Infantile Diarrhea. AMA Am. J. Dis. Child., 90(2), 125-134 (1995).
  7. Seo, Y.G., Yoon, Y.H., Kim, S.J., Functionality and Safety of Probiotics. J. Dairy Sci. Biotechnol., 37, 94-101 (2019).
  8. Alcock, B.P., Raphenya, A.R., Lau, T., Tsang, K.K., Bouchard, M., Edalatmand, A., Huynh, W., Nguyen, A.V., Cheng, A.A., Liu, S., Min, S.Y., Miroshnichenko, A., Tran, H.K., Werfalli, R.E., Nasir, J.A., Oloni, M., Speicher, D.J., Florescu, A., Singh, B., Faltyn, M., Hernandez-Koutoucheva, A., Sharma, A.N., Bordeleau, E., Pawlowski, A.C., Zubyk, H.L., Dooley, D., Griffiths, E., Maguire, F., Winsor, G.L., Beiko, R.G., Brinkman, F.S.L., Hsiao, W.W.L., Domselaar, G.V., McArthur, A.G., CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res., 48, D517-D525 (2020).
  9. Jia, B., Raphenya, A.R., Alcock, B., Waglechner, N., Guo, P., Tsang, K.K., Lago, B.A., Dave, B.M., Pereira, S., Sharma, A. N., Doshi, S., Courtot, M., Lo, R., Williams, L.E., Frye, J.G., Elsayegh, T., Sardar, D., Westman, E.L., Pawlowski, A.C., Johnson, T.A., Brinkman, F.S.L., Wright, G.D., McArthur, A. G., CARD 2017: expansion and model-centric curation of the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res., 45, D566-D573 (2017). https://doi.org/10.1093/nar/gkw1004
  10. Fotakis, G., Timberll, J.A., In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol. Lett., 160, 171-177 (2005). https://doi.org/10.1016/j.toxlet.2005.07.001
  11. European Food Safety Authority (EFSA)., Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA Journal., 10, 2740 (2012).
  12. Kiwaki, M., Sato, T., Antimicrobial susceptibility of Bifidobacterium breve strains and genetic analysis of streptomycin resistance of probiotic B. breve strain Yakult. Int. J. Food Microbiol., 134, 211-215 (2009). https://doi.org/10.1016/j.ijfoodmicro.2009.06.011
  13. Comprehensive Antibiotic Resistance Database (CARD version 3.0.4). Mycobacterium tuberculosis rpsL mutations conferring resistance to streptomycin. Retrieved from http://card.mcmaster.ca/ontology/39979
  14. Comprehensive Antibiotic Resistance Database (CARD version 3.0.4). Tet (W/N/W). http://card.mcmaster.ca/ontology/41634
  15. Duranti, S., Lugli, G.A., Mancabelli, L., Turroni, F., Milani, C., Mangifesta, M., Ferrario, C., Anzalone, R., Viappiani, A., van Sinderen, D., Ventura, M., Prevalence of Antibiotic Resistance Genes among Human Gut-Derived Bifidobacteria. Appl. Environ. Microbiol., 83, e02894-16 (2017).