DOI QR코드

DOI QR Code

Quality Characteristics and Antioxidant Activity of Black Soybean Sunsik Product with Functional Food Ingredients and Functional Labeling System

기능성 원료를 첨가하여 기능성 표시제도를 적용한 검은콩 선식 제품의 품질 특성 및 항산화활성

  • Lee, Kang-Pyo (Motherlove Co., Ltd.) ;
  • In, Ye-Won (Motherlove Co., Ltd.) ;
  • Lim, June seok (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Cho, Geun hee (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Lee, Ok-Hwan (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Lee, Boo-Yong (Department of Food Science and Biotechnology, Cha university)
  • 이강표 ((주)엄마사랑) ;
  • 인예원 ((주)엄마사랑) ;
  • 임준석 (강원대학교 바이오산업공학부 식품생명공학전공) ;
  • 조근희 (강원대학교 바이오산업공학부 식품생명공학전공) ;
  • 이옥환 (강원대학교 바이오산업공학부 식품생명공학전공) ;
  • 이부용 (차의과대학교 식품생명공학과)
  • Received : 2022.09.19
  • Accepted : 2022.10.04
  • Published : 2022.10.30

Abstract

This study was performed to investigate the quality characteristics and antioxidant activity of black soybean Sunsik product with functional food ingredients and functional labeling system. We prepared black soybean Sunsik (BS) containing black beans, cereals, and vegetables. Black soybean Sunsik with nondigestible maltodextrin and calcium lactate (BSN) was prepared by adding non-digestible maltodextrin and calcium lactate to the base recipe to apply a functional labeling system. The particle size in BS was 118.00 ㎛, whereas BSN was 127.00 ㎛. The respective L, a, and b color values of BS were 73.25, 2.36, and 14.21. The respective L, a, and b values of BSN were 73.21, 2.36, and 14.31. The respective water retention capacities of BS and BSN were 241.67% and 216.33%. No significant difference was observed between BS and BSN in the three physicochemical properties described above. However, the pH of BSN was 5.45, which was significantly lower than that of BS. The total respective phenolic contents of BS and BSN were 1.75 mg GAE/g and 1.61 mg GAE/g, and total respective flavonoid contents of BS and BSN were 6.36 mg RE/g and 5.95 mg RE/g. The antioxidant capacities of BS and BSN were compared via assays of DPPH and ABTS radical scavenging activities, FRAP, and reducing power. The antioxidant activities of BS and BSN increased in a dose-dependant manner. No significant difference between BS and BSN was observed in any measure of antioxidant capacity. These results suggested that the addition of functional food ingredients (non-digestible maltodextrin and calcium lactate) did not affect the quality characteristics and antioxidant activity of black soybean Sunsik.

본 연구에서는 기능성 원료를 첨가하여 기능성 표시제도를 적용한 검은콩 선식 제품의 품질 특성 및 항산화활성을 비교하였다. 입도 분포의 경우, BS와 BSN에서 각각 118.00±12.09 ㎛ 127.00±14.73 ㎛ 로 유의미한 차이를 보이지 않았으며, 색도 또한 L, a, b에서 모두 유의미한 차이를 보이지 않았다. 수분 결합력에서는 BS 및 BSN에서 각각 241.67±30.66% 및 216.33±13.01%를 나타내었고 pH는 BSN에서 5.45±0.03로 BS(6.00±0.04)에 비해 낮은 수치를 보였다. 총 페놀함량은 BS 및 BSN에서 각각 1.75±0.26 mg GAE/g 및 1.61±0.19 mg GAE/g로 나타났고, 총 플라보노이드 함량 역시 BS가 6.36±0.3419 mg RE/g로 BSN 5.95±0.54 mg RE/g와 비교해 볼 때 유의미한 차이를 보이지 않았다. 항산화 활성의 경우, 모든 항산화 측정 시험법에서 BS 및 BSN 모두 농도의존적으로 항산화 활성을 증가하는 경향을 보였으며 두 시료간의 항산화 활성의 유의미한 차이를 보이지 않았다. 이상 결과들을 종합해볼 때, 검은콩 선식에 기능성원료 첨가에 따른 선식 제품의 품질특성에는 큰 변화가 관찰되지 않았으며 항산화활성 등의 고유 기능성도 유지되는 것으로 나타났다. 따라서, 기능성 원료를 첨가하여 제조한 검은콩 선식 제품의 경우 기능성 표시제도를 통해 소비자 니즈에 부합하며 기능성이 향상된 제품화가 가능할 것으로 사료되며, 향후 감각화학적 측면에서 기능성원료에 의한 관능적 특성의 변화 등의 연구가 추가되면 선식제품의 고부가가치화에 기여하는 바가 클 것으로 사료된다.

Keywords

Acknowledgement

본 논문은 농림축산식품부의 재원으로 농림식품기술기획평가원의 고부가가치식품기술개발사의 지원(121013-3)을 받아 수행된 연구로 이에 감사드립니다.

References

  1. Choi, E.J., Byung, H.K., A comparison of the fat, sugar, and sodium contents in ready-to-heat type home meal replacements and restaurant foods in Korea. J. Food Compos. Anal., 92, 103524 (2020). https://doi.org/10.1016/j.jfca.2020.103524
  2. Kim, Y.J., Byun, M.H., Why home meal replacement has been developed?. The Korean Soc. Food Sci. Nutr., 22, 8-12 (2017).
  3. Han, J.H., Soybeans and home meal replacement. Korea soybean Digest., 344, 2-4 (2019).
  4. Kim, N.H., (2022. September 2). Health powder safety survey [pdf file]. Retrieved from https://www.kca.go.kr/odr/cm/in/osCmKcaReptDetW.do
  5. Kim, H.G., What are the policy responses to increasing oneperson households across the globe?. Global social security review., 11, 5-15 (2019).
  6. Bembem, K., Agrahar-Murugkar, D., Development of millet based ready-to-drink beverage for geriatric population. J. Food Sci. Technol., 57, 3278-3283 (2020). https://doi.org/10.1007/s13197-020-04359-9
  7. Fernandes, C.G., Sonawane, S.K., Arya, S.S., Optimization, and modeling of novel multigrain beverage: effect of food additives on physicochemical and functional properties. J. Food Process. Preserv., 43, 14151 (2019).
  8. Jung, J.H., Lee, S.Y., Microbial growth in dry grain food (Sunsik) beverages prepared with water, milk, soymilk, or honey-water. J. Food Sci., 75, 239-242 (2010).
  9. Kim, J. H., Yang, J.Y., Microbial and physicochemical characteristics on raw cereal for Sunsik by hot-air drying methods. J. Food Hyg. Saf., 27, 415-419 (2012). https://doi.org/10.13103/JFHS.2012.27.4.415
  10. Park, K.H., Quality, and characteristics of manufacturing Sunsik with edible insect (mealworm). Culin. Sci. Hosp. Res., 24, 13-23 (2018).
  11. Koh, E.M., Jang, K.H., Surh, J.H., Improvement of physicochemical properties of cereal based ready-to-eat Sunsik using fermentation with Bionuruk and Bifidobacterium longum. Food Sci. Biotechnol., 23, 1977-1985 (2014). https://doi.org/10.1007/s10068-014-0270-6
  12. Lee, E.J., Kim, S.G., Yoo, S.R., Oh, S.S., Hwang, I.G., Kwon, G.S., Park, J.H., Microbial contamination by Bacillus cereus, Clostridium perfringens, and Enterobacter sakazakii in Sunsik. Food Sci. Biotechnol., 16, 948-953 (2007).
  13. Liu, K.S., 1997. Chemistry, and nutritional value of soybean components. In: soybeans. Chapman & Hall, New York, NY, USA, pp. 25-113.
  14. Duenas, M., Hernandez, T., Estrella, I., Assessment of in vitro antioxidant capacity of the seed coat and the cotyledon of legumes in relation to their phenolic contents. Food Chem., 98, 95-103 (2006). https://doi.org/10.1016/j.foodchem.2005.05.052
  15. Furuta, S., Takahashi, M., Takahata, Y., Nishiba, Y., Oki, T., Masuda, M., Kobayashi, M., Suda, I., Radical-scavenging activities of soybean cultivars with black seed coats. Food Sci. Technol., 9, 73-75 (2003).
  16. Kim, S.H., Kwon, T.W., Lee, Y.S., Choung, M.G., Moon, G.S., A major antioxidative components and comparison of antioxidative activities in black soybean. Korean J. Food Sci. Technol., 37, 73-77 (2005).
  17. Livesey, G., Tagami, H., Interventions to lower the glycemic response to carbohydrate foods with a low-viscosity fiber (resistant maltodextrin): meta-analysis of randomized controlled trials. Am. J. Clin. Nutr., 89, 114-125 (2009). https://doi.org/10.3945/ajcn.26842
  18. Ohkuma, K., Matuda, I., Katta, Y., Hanno, Y., Pyrolysis of starch and its digestibility by enzymes-characterization of indigestible dextrin. J. Jpn. Soc. Starch Sci., 37, 107-114 (1990). https://doi.org/10.5458/jag1972.37.107
  19. Yamada, Y., Hosoya, S., Nishimura, S., Tanaka, T., Kajimoto, Y., Nishimura, A., Kajimoto, O., Effect of bread containing resistant starch on postprandial blood glucose levels in humans. Biosci.. Biotechnol. Biochem., 69, 559-566 (2005). https://doi.org/10.1271/bbb.69.559
  20. Fujiwara, K., Matsuoka, A., Improvement of glucose tolerance by low-viscosity, water-soluble dietary fiber, indigestible dextrin. Jpn. J. Nutr. Diet., 53, 361-368 (1995). https://doi.org/10.5264/eiyogakuzashi.53.361
  21. Lee, H.I., Lee, H.G., Bae, I.Y., Impact of dietary fibers from various source in wheat flour gel model: Aspect of suitability of processing and in vitro starch digestibility. Food Eng. Prog., 17, 297-304 (2013). https://doi.org/10.13050/foodengprog.2013.17.4.297
  22. Jung, J.Y., Kim, S.A., Chung, H.J., Quality characteristics of low-fat muffin containing corn bran fiber. The Korean Soc. Food Sci. Nutr., 34, 694-699 (2005). https://doi.org/10.3746/jkfn.2005.34.5.694
  23. Kim, Y.A., The effect of nondigestible maltodextrin on the quality of cake. Journal of The Keonyang University., 13, 9-22 (2004).
  24. Nam, S.W., Kim, E., Kim, M.R., Physicochemical quality of functional gluten-free noodles added with nondigestible maltodextrin. J. East Asian Soc. Dietary Life., 25, 681-690 (2015). https://doi.org/10.17495/easdl.2015.8.25.4.681
  25. Medealf, DG., Gilles, KA., Wheat starches, I. Comparison of physicochemical properties. Cereal Chem., 42, 558-568 (1965).
  26. Duval, B., Shetty, K., The stimulation of phenolics and antioxidant activity in pea (Pisum sativum) elicited by genetically transformed anise root extract. J. Food Biochem., 25, 361-377 (2007). https://doi.org/10.1111/j.1745-4514.2001.tb00746.x
  27. Moreno, M.I., Isla, M.I., Sampietro, A.R., Vattuone, M.A., Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J. Ethnopharmacol., 71, 109-114 (2000). https://doi.org/10.1016/S0378-8741(99)00189-0
  28. Blois, M.S., Antioxidant determinations by the use of a stable free radical. Nature., 181, 1199-1200 (1958). https://doi.org/10.1038/1811199a0
  29. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-evans, C., Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 26, 1231-1237 (1999). https://doi.org/10.1016/S0891-5849(98)00315-3
  30. Benzie, I.F.F., Strain, J.J., The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal. Biochem., 239, 70-76 (1996). https://doi.org/10.1006/abio.1996.0292
  31. Yen, G.C., Duh, P.D., Antioxidative properties of methanolic extracts from peanut hulls. J. Am. Oil Chem. Soc., 70, 383-386 (1993). https://doi.org/10.1007/BF02552711
  32. Lee, S.M., Baik, M.Y., Kim, H.S., Effect of high-pressure homogenization on Biji paste and optimization of bread fortified with dietary fiber. Food Eng. Prog., 18, 95-101 (2014). https://doi.org/10.13050/foodengprog.2014.18.2.95
  33. Lee, S.K., Shin, M.S., Characteristics of defatted and lipid reintroduced sweet potato starches. Korean J. Food Sci. Technol., 23, 341-348 (1991).
  34. Kye, S.K., Water binding capacity of vegetable fiber. Korean J. Food & Nutr., 9, 231-235 (1996).
  35. Jeon, E.R., Effects of dietary fibers from cooked rice kernel for sikhe on the rice starch properties. Ph.D Dissertation, Chonnam National University, Gwangju, Korea (1998).
  36. Kim, Y.S., Cho, M.S., Development and optimization of a pear pound cake with resistant starch and digestion resistant maltodextrin. The Korean Soc. Food Sci. Nutr., 49, 80-89 (2020). https://doi.org/10.3746/jkfn.2020.49.1.80
  37. Hallivell, B., Aeschbach, R., Loliger, J., Aruoma, O.I., The characterization of antioxidant. Food Chem. Toxicol., 33, 601-617 (1995). https://doi.org/10.1016/0278-6915(95)00024-V
  38. Kim, H.J., Jun, B.S., Kim, S.K., Cha, J.Y., Cho, Y.S., Polyphenolic compound content and antioxidative activities by extracts from seed, sprout and flower of safflower (Carthamus tinctorius L). J. Korean Soc. Food Sci. Nutr., 29, 1127-1132 (2000).
  39. Chong, S.Y., Wong, C.W., Effect of spray dryer inlet temperature and maltodextrin concentration on colour profile and total phenolic content of Sapodilla (Manilkara zapota) powder. Int. Food Res. J., 24, 2543-2548 (2017).
  40. Kang, S.A., Han, J.A., Choue, R.W., DPPH radical scavenger activity and antioxidant effects of Cham-Dang-Gui (Angelica gigas). The Korean Soc. Food Sci. Nutr., 33, 1112-1118 (2004). https://doi.org/10.3746/jkfn.2004.33.7.1112
  41. Robin, V.B., Guido, R.H., Henk, V.B., Aalt, B., Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem., 66, 511-517 (1999). https://doi.org/10.1016/S0308-8146(99)00089-8
  42. Oyaizu, M., Studies on products of the browning reaction. Antioxidative activities of browning reaction products prepared from glucosamine. Jpn. J. Nutr., 44, 307-315 (1988). https://doi.org/10.5264/eiyogakuzashi.44.307