DOI QR코드

DOI QR Code

LIPUS Promotes Endothelial Differentiation and Angiogenesis of Periodontal Ligament Stem Cells by Activating Piezo1

  • Rui Hu (Department of Preventive Dentistry, College of Stomatology, Chongqing Medical University) ;
  • Zheng-yan Yang (Department of Preventive Dentistry, College of Stomatology, Chongqing Medical University) ;
  • Yue-heng Li (Department of Preventive Dentistry, College of Stomatology, Chongqing Medical University) ;
  • Zhi Zhou (Department of Preventive Dentistry, College of Stomatology, Chongqing Medical University)
  • 투고 : 2022.02.03
  • 심사 : 2022.04.18
  • 발행 : 2022.11.30

초록

Background and Objectives: Low-intensity pulsed ultrasound (LIPUS) promotes differentiation and regulates biological functions of various stem cells, but its effect on the endothelial differentiation of periodontal ligament stem cells (PDLSCs) is unclear. This study investigated the effect of LIPUS on endothelial differentiation and angiogenesis in PDLSCs and the role of the mechanically sensitive ion channel Piezo1 in this process. Methods and Results: PDLSCs obtained from healthy people were used for endothelial induction, and 10 ㎍/ml lipopolysaccharide (LPS) was used to simulate the inflammatory state. The induced cells were treated with LIPUS (50 mW/cm2, 1.5 MHz) to study its effect on the endothelial differentiation of PDLSCs and the tube formation of differentiated cells. PCR, flow cytometry, immunofluorescence, and Matrigel tube formation assays were used to detect the differentiation and tube formation of PDLSCs. GsMTx4 was used to inhibit the expression of Piezo1, and the role of the Piezo1 pathway in the endothelial differentiation and microvascular formation of PDLSCs after LIPUS treatment was studied. The data showed that LIPUS increased endothelial differentiation and angiogenesis in PDLSCs under inflammatory or noninflammatory conditions. The use of an inhibitor weakened the effect of LIPUS. Conclusions: This study demonstrated that LIPUS can activate the expression of Piezo1 and promote the endothelial differentiation and microvascular formation of PDLSCs.

키워드

과제정보

This study was supported by the Natural Science Foundation Project of Chongqing (CSTC2019jcyj-msxmX0191), Science Project of the Chongqing Municipal Health Commission (Grant No.2021MSXM31), and the Program for Innovation Team Building at Institutions of Higher Education in Chongqing in 2016 (Grant No. CXTDG201602006).

참고문헌

  1. Iwasaki K, Komaki M, Yokoyama N, Tanaka Y, Taki A, Honda I, Kimura Y, Takeda M, Akazawa K, Oda S, Izumi Y, Morita I. Periodontal regeneration using periodontal ligament stem cell-transferred amnion. Tissue Eng Part A 2014;20:693-704
  2. Suphasiriroj W, Mikami M, Sato S. Comparative studies on microvascular endothelial cells isolated from periodontal tissue. J Periodontol 2013;84:1002-1009
  3. Komaki M. Pericytes in the periodontal ligament. Adv Exp Med Biol 2019;1122:169-186
  4. Amorim BR, Silverio KG, Casati MZ, Sallum EA, Kantovitz KR, Nociti FH Jr. Neuropilin controls endothelial differentiation by mesenchymal stem cells from the periodontal ligament. J Periodontol 2016;87:e138-e147
  5. Wang L, Zhou F, Zhang P, Wang H, Qu Z, Jia P, Yao Z, Shen G, Li G, Zhao G, Li J, Mao Y, Xie Z, Xu W, Xu Y, Xu Y. Human type H vessels are a sensitive biomarker of bone mass. Cell Death Dis 2017;8:e2760
  6. Zhao Y, Xie L. Unique bone marrow blood vessels couple angiogenesis and osteogenesis in bone homeostasis and diseases. Ann N Y Acad Sci 2020;1474:5-14
  7. Xu R, Yallowitz A, Qin A, Wu Z, Shin DY, Kim JM, Debnath S, Ji G, Bostrom MP, Yang X, Zhang C, Dong H, Kermani P, Lalani S, Li N, Liu Y, Poulos MG, Wach A, Zhang Y, Inoue K, Di Lorenzo A, Zhao B, Butler JM, Shim JH, Glimcher LH, Greenblatt MB. Targeting skeletal endothelium to ameliorate bone loss. Nat Med 2018;24:823-833
  8. Gao Q, Walmsley AD, Cooper PR, Scheven BA. Ultrasound stimulation of different dental stem cell populations: role of mitogen-activated protein kinase signaling. J Endod 2016;42:425-431
  9. Kusuyama J, Bandow K, Shamoto M, Kakimoto K, Ohnishi T, Matsuguchi T. Low intensity pulsed ultrasound (LIPUS) influences the multilineage differentiation of mesenchymal stem and progenitor cell lines through ROCK-Cot/Tpl2-MEK-ERK signaling pathway. J Biol Chem 2014;289:10330-10344
  10. Wang Y, Jiang L, Xu T, Su Z, Guo X, Tu J, Zhang D, Sun W, Kong X. p38 MAPK signaling is a key mediator for low-intensity pulsed ultrasound (LIPUS) in cultured human omental adipose-derived mesenchymal stem cells. Am J Transl Res 2019;11:418-429
  11. Kang PL, Huang HH, Chen T, Ju KC, Kuo SM. Angiogenesis-promoting effect of LIPUS on hADSCs and HUVECs cultured on collagen/hyaluronan scaffolds. Mater Sci Eng C Mater Biol Appl 2019;102:22-33
  12. Gorick CM, Chappell JC, Price RJ. Applications of ultrasound to stimulate therapeutic revascularization. Int J Mol Sci 2019;20:3081
  13. Su Z, Xu T, Wang Y, Guo X, Tu J, Zhang D, Kong X, Sheng Y, Sun W. Low-intensity pulsed ultrasound promotes apoptosis and inhibits angiogenesis via p38 signaling‑mediated endoplasmic reticulum stress in human endothelial cells. Mol Med Rep 2019;19:4645-4654
  14. Ichijo S, Shindo T, Eguchi K, Monma Y, Nakata T, Morisue Y, Kanai H, Osumi N, Yasuda S, Shimokawa H. Low-intensity pulsed ultrasound therapy promotes recovery from stroke by enhancing angio-neurogenesis in mice in vivo. Sci Rep 2021;11:4958
  15. Pei F, Liu J, Zhang L, Pan X, Huang W, Cen X, Huang S, Jin Y, Zhao Z. The functions of mechanosensitive ion channels in tooth and bone tissues. Cell Signal 2021;78:109877 Erratum in: Cell Signal 2022;92:110276
  16. Shen Y, Pan Y, Guo S, Sun L, Zhang C, Wang L. The roles of mechanosensitive ion channels and associated downstream MAPK signaling pathways in PDLC mechanotransduction. Mol Med Rep 2020;21:2113-2122
  17. Li H, Deng Y, Tan M, Feng G, Kuang Y, Li J, Song J. Low-intensity pulsed ultrasound upregulates osteogenesis under inflammatory conditions in periodontal ligament stem cells through unfolded protein response. Stem Cell Res Ther 2020;11:215
  18. Watson EC, Adams RH. Biology of bone: the vasculature of the skeletal system. Cold Spring Harb Perspect Med 2018;8:a031559
  19. Bae YK, Kim GH, Lee JC, Seo BM, Joo KM, Lee G, Nam H. The significance of SDF-1α-CXCR4 axis in in vivo angiogenic ability of human periodontal ligament stem cells. Mol Cells 2017;40:386-392
  20. Ye J, Zhang R, Chu Y, Li J, Wang M, Chen F, Wang X, Liu L, Wang Q. A comparative study on the endothelial cell differentiation of human healthy and inflammatory periodontal ligament stem cells. Chin J Conserv Dent 2014;24:7-12
  21. Wei W, An Y, An Y, Fei D, Wang Q. Activation of autophagy in periodontal ligament mesenchymal stem cells promotes angiogenesis in periodontitis. J Periodontol 2018;89:718-727
  22. Kukolj T, Trivanovic D, Djordjevic IO, Mojsilovic S, Krstic J, Obradovic H, Jankovic S, Santibanez JF, Jaukovic A, Bugarski D. Lipopolysaccharide can modify differentiation and immunomodulatory potential of periodontal ligament stem cells via ERK1,2 signaling. J Cell Physiol 2018;233:447-462
  23. Kusuyama J, Nakamura T, Ohnishi T, Eiraku N, Noguchi K, Matsuguchi T. Low-intensity pulsed ultrasound (LIPUS) promotes BMP9-induced osteogenesis and suppresses inflammatory responses in human periodontal ligament-derived stem cells. J Orthop Trauma 2017;31:S4
  24. Ranade SS, Syeda R, Patapoutian A. Mechanically activated ion channels. Neuron 2015;87:1162-1179 Erratum in: Neuron 2015;88:433
  25. Kang H, Hong Z, Zhong M, Klomp J, Bayless KJ, Mehta D, Karginov AV, Hu G, Malik AB. Piezo1 mediates angiogenesis through activation of MT1-MMP signaling. Am J Physiol Cell Physiol 2019;316:C92-C103
  26. Zhang L, Liu X, Gao L, Ji Y, Wang L, Zhang C, Dai L, Liu J, Ji Z. Activation of Piezo1 by ultrasonic stimulation and its effect on the permeability of human umbilical vein endothelial cells. Biomed Pharmacother 2020;131:110796
  27. Kang T, Huang S, Li P, Shi T, Yu Q, Duan Y. Piezos' expression in periodontal tissues of rats. Chin J Conserv Dent 2014;24:269-273