DOI QR코드

DOI QR Code

Direct Conversion to Achieve Glial Cell Fates: Oligodendrocytes and Schwann Cells

  • Wonjin Yun (Institute for Cell Engineering, Johns Hopkins University School of Medicine) ;
  • Yong Jun Kim (Department of Pathology, College of Medicine, Kyung Hee University) ;
  • Gabsang Lee (Institute for Cell Engineering, Johns Hopkins University School of Medicine)
  • 투고 : 2022.01.14
  • 심사 : 2022.02.03
  • 발행 : 2022.02.28

초록

Glia have been known for its pivotal roles in physiological and pathological conditions in the nervous system. To study glial biology, multiple approaches have been applied to utilize glial cells for research, including stem cell-based technologies. Human glial cells differentiated from pluripotent stem cells are now available, allowing us to study the structural and functional roles of glia in the nervous system, although the efficiency is still low. Direct conversion is an advanced strategy governing fate conversion of diverse cell types directly into the desired lineage. This novel strategy stands as a promising approach for preliminary research and regenerative medicine. Direct conversion employs genetic and environmental cues to change cell fate to that with the required functional cell properties while retaining maturity-related molecular features. As an alternative method, it is now possible to obtain a variety of mature cell populations that could not be obtained using conventional differentiation methods. This review summarizes current achievements in obtaining glia, particularly oligodendrocytes and Schwann cells.

키워드

과제정보

Work in Lee lab was supported by grants from the National Institutes of Health through R01NS093213. Work in Kim lab was supported by grants from the NRF grant funded by the Korea government (NRF-2017R1C1B3009321 and NRF-2021M3E5E5096744).

참고문헌

  1. von Bartheld CS. Myths and truths about the cellular composition of the human brain: a review of influential concepts. J Chem Neuroanat 2018;93:2-15 
  2. Verkhratsky A, Orkand RK, Kettenmann H. Glial calcium: homeostasis and signaling function. Physiol Rev 1998;78:99-141 
  3. Bennett ML, Viaene AN. What are activated and reactive glia and what is their role in neurodegeneration? Neurobiol Dis 2021;148:105172 
  4. Kettenmann H, Ransom BR. Neuroglia. 3rd ed. New York: Oxford University Press; 2013. 930 
  5. Hu BY, Du ZW, Li XJ, Ayala M, Zhang SC. Human oligodendrocytes from embryonic stem cells: conserved SHH signaling networks and divergent FGF effects. Development 2009;136:1443-1452 
  6. Shaltouki A, Peng J, Liu Q, Rao MS, Zeng X. Efficient generation of astrocytes from human pluripotent stem cells in defined conditions. Stem Cells 2013;31:941-952 
  7. Mukherjee-Clavin B, Mi R, Kern B, Choi IY, Lim H, Oh Y, Lannon B, Kim KJ, Bell S, Hur JK, Hwang W, Che YH, Habib O, Baloh RH, Eggan K, Brandacher G, Hoke A, Studer L, Kim YJ, Lee G. Comparison of three congruent patient-specific cell types for the modelling of a human genetic Schwann-cell disorder. Nat Biomed Eng 2019;3:571-582 
  8. Lenroot RK, Giedd JN. Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. Neurosci Biobehav Rev 2006;30:718-729 
  9. Jakovcevski I, Filipovic R, Mo Z, Rakic S, Zecevic N. Oligodendrocyte development and the onset of myelination in the human fetal brain. Front Neuroanat 2009;3:5 
  10. Shearman JD, Franks AJ. S-100 protein in Schwann cells of the developing human peripheral nerve. An immunohistochemical study. Cell Tissue Res 1987;249:459-463 
  11. Tau GZ, Peterson BS. Normal development of brain circuits. Neuropsychopharmacology 2010;35:147-168 
  12. Lanjewar SN, Sloan SA. Growing glia: cultivating human stem cell models of gliogenesis in health and disease. Front Cell Dev Biol 2021;9:649538 
  13. Imaizumi Y, Okano H. Modeling human neurological disorders with induced pluripotent stem cells. J Neurochem 2014;129:388-399 
  14. Horisawa K, Suzuki A. Direct cell-fate conversion of somatic cells: toward regenerative medicine and industries. Proc Jpn Acad Ser B Phys Biol Sci 2020;96:131-158 
  15. Mitchell R, Szabo E, Shapovalova Z, Aslostovar L, Makondo K, Bhatia M. Molecular evidence for OCT4-induced plasticity in adult human fibroblasts required for direct cell fate conversion to lineage specific progenitors. Stem Cells 2014;32:2178-2187 
  16. Kim YJ, Lim H, Li Z, Oh Y, Kovlyagina I, Choi IY, Dong X, Lee G. Generation of multipotent induced neural crest by direct reprogramming of human postnatal fibroblasts with a single transcription factor. Cell Stem Cell 2014;15:497-506 
  17. Chang Y, Cho B, Kim S, Kim J. Direct conversion of fibroblasts to osteoblasts as a novel strategy for bone regeneration in elderly individuals. Exp Mol Med 2019;51:1-8 
  18. Carlson BM. The human body: linking structure and function. London: Elsevier/Academic Press; 2019. 55 
  19. Jessen KR. Glial cells. Int J Biochem Cell Biol 2004;36:1861-1867 
  20. Jakel S, Dimou L. Glial cells and their function in the adult brain: a journey through the history of their ablation. Front Cell Neurosci 2017;11:24 
  21. Jessen KR, Mirsky R. The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci 2005;6:671-682 
  22. Kurosinski P, Gotz J. Glial cells under physiologic and pathologic conditions. Arch Neurol 2002;59:1524-1528 
  23. Greenhalgh AD, David S, Bennett FC. Immune cell regulation of glia during CNS injury and disease. Nat Rev Neurosci 2020;21:139-152 
  24. Sakka L, Coll G, Chazal J. Anatomy and physiology of cerebrospinal fluid. Eur Ann Otorhinolaryngol Head Neck Dis 2011;128:309-316 
  25. Visser VL, Rusinek H, Weickenmeier J. Peak ependymal cell stretch overlaps with the onset locations of periventricular white matter lesions. Sci Rep 2021;11:21956 
  26. Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisen J. Identification of a neural stem cell in the adult mammalian central nervous system. Cell 1999;96:25-34 
  27. Carlen M, Meletis K, Goritz C, Darsalia V, Evergren E, Tanigaki K, Amendola M, Barnabe-Heider F, Yeung MS, Naldini L, Honjo T, Kokaia Z, Shupliakov O, Cassidy RM, Lindvall O, Frisen J. Forebrain ependymal cells are Notch-dependent and generate neuroblasts and astrocytes after stroke. Nat Neurosci 2009;12:259-267 
  28. Wei D, Levic S, Nie L, Gao WQ, Petit C, Jones EG, Yamoah EN. Cells of adult brain germinal zone have properties akin to hair cells and can be used to replace inner ear sensory cells after damage. Proc Natl Acad Sci USA 2008;105:21000-21005 
  29. Salzer JL, Zalc B. Myelination. Curr Biol 2016;26:R971-R975 
  30. Bolivar S, Navarro X, Udina E. Schwann cell role in selectivity of nerve regeneration. Cells 2020;9:2131 
  31. Love S. Demyelinating diseases. J Clin Pathol 2006;59:1151-1159 
  32. Hoftberger R, Guo Y, Flanagan EP, Lopez-Chiriboga AS, Endmayr V, Hochmeister S, Joldic D, Pittock SJ, Tillema JM, Gorman M, Lassmann H, Lucchinetti CF. The pathology of central nervous system inflammatory demyelinating disease accompanying myelin oligodendrocyte glycoprotein autoantibody. Acta Neuropathol 2020;139:875-892 
  33. Park HT, Kim YH, Lee KE, Kim JK. Behind the pathology of macrophage-associated demyelination in inflammatory neuropathies: demyelinating Schwann cells. Cell Mol Life Sci 2020;77:2497-2506 
  34. Ydens E, Lornet G, Smits V, Goethals S, Timmerman V, Janssens S. The neuroinflammatory role of Schwann cells in disease. Neurobiol Dis 2013;55:95-103 
  35. Peferoen L, Kipp M, van der Valk P, van Noort JM, Amor S. Oligodendrocyte-microglia cross-talk in the central nervous system. Immunology 2014;141:302-313 
  36. van Tilborg E, de Theije CGM, van Hal M, Wagenaar N, de Vries LS, Benders MJ, Rowitch DH, Nijboer CH. Origin and dynamics of oligodendrocytes in the developing brain: implications for perinatal white matter injury. Glia 2018;66:221-238 
  37. Najm FJ, Zaremba A, Caprariello AV, Nayak S, Freundt EC, Scacheri PC, Miller RH, Tesar PJ. Rapid and robust generation of functional oligodendrocyte progenitor cells from epiblast stem cells. Nat Methods 2011;8:957-962 
  38. Wang S, Bates J, Li X, Schanz S, Chandler-Militello D, Levine C, Maherali N, Studer L, Hochedlinger K, Windrem M, Goldman SA. Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Cell Stem Cell 2013;12:252-264 
  39. Stacpoole SR, Spitzer S, Bilican B, Compston A, Karadottir R, Chandran S, Franklin RJ. High yields of oligodendrocyte lineage cells from human embryonic stem cells at physiological oxygen tensions for evaluation of translational biology. Stem Cell Reports 2013;1:437-450 
  40. Piao J, Major T, Auyeung G, Policarpio E, Menon J, Droms L, Gutin P, Uryu K, Tchieu J, Soulet D, Tabar V. Human embryonic stem cell-derived oligodendrocyte progenitors remyelinate the brain and rescue behavioral deficits following radiation. Cell Stem Cell 2015;16:198-210 
  41. Yun W, Hong W, Son D, Liu HW, Kim SS, Park M, Kim IY, Kim DS, Song G, You S. Generation of anterior hindbrain-specific, glial-restricted progenitor-like cells from human pluripotent stem cells. Stem Cells Dev 2019;28:633-648 
  42. Douvaras P, Fossati V. Generation and isolation of oligodendrocyte progenitor cells from human pluripotent stem cells. Nat Protoc 2015;10:1143-1154 
  43. Douvaras P, Wang J, Zimmer M, Hanchuk S, O'Bara MA, Sadiq S, Sim FJ, Goldman J, Fossati V. Efficient generation of myelinating oligodendrocytes from primary progressive multiple sclerosis patients by induced pluripotent stem cells. Stem Cell Reports 2014;3:250-259 
  44. Yamashita T, Miyamoto Y, Bando Y, Ono T, Kobayashi S, Doi A, Araki T, Kato Y, Shirakawa T, Suzuki Y, Yamauchi J, Yoshida S, Sato N. Differentiation of oligodendrocyte progenitor cells from dissociated monolayer and feeder-free cultured pluripotent stem cells. PLoS One 2017;12:e0171947 
  45. Kim DS, Jung SJ, Lee JS, Lim BY, Kim HA, Yoo JE, Kim DW, Leem JW. Rapid generation of OPC-like cells from human pluripotent stem cells for treating spinal cord injury. Exp Mol Med 2017;49:e361 
  46. Ehrlich M, Mozafari S, Glatza M, Starost L, Velychko S, Hallmann AL, Cui QL, Schambach A, Kim KP, Bachelin C, Marteyn A, Hargus G, Johnson RM, Antel J, Sterneckert J, Zaehres H, Scholer HR, Baron-Van Evercooren A, Kuhlmann T. Rapid and efficient generation of oligodendrocytes from human induced pluripotent stem cells using transcription factors. Proc Natl Acad Sci USA 2017;114:E2243-E2252 
  47. Garcia-Leon JA, Kumar M, Boon R, Chau D, One J, Wolfs E, Eggermont K, Berckmans P, Gunhanlar N, de Vrij F, Lendemeijer B, Pavie B, Corthout N, Kushner SA, Davila JC, Lambrichts I, Hu WS, Verfaillie CM. SOX10 single transcription factor-based fast and efficient generation of oligodendrocytes from human pluripotent stem cells. Stem Cell Reports 2018;10:655-672 
  48. Wang J, Pol SU, Haberman AK, Wang C, O'Bara MA, Sim FJ. Transcription factor induction of human oligodendrocyte progenitor fate and differentiation. Proc Natl Acad Sci U S A 2014;111:E2885-E2894 
  49. Schmitteckert S, Ziegler C, Rappold GA, Niesler B, Rolletschek A. Molecular characterization of embryonic stem cell-derived cardiac neural crest-like cells revealed a spatiotemporal expression of an Mlc-3 isoform. Int J Stem Cells 2020;13:65-79 
  50. Soldatov R, Kaucka M, Kastriti ME, Petersen J, Chontorotzea T, Englmaier L, Akkuratova N, Yang Y, Haring M, Dyachuk V, Bock C, Farlik M, Piacentino ML, Boismoreau F, Hilscher MM, Yokota C, Qian X, Nilsson M, Bronner ME, Croci L, Hsiao WY, Guertin DA, Brunet JF, Consalez GG, Ernfors P, Fried K, Kharchenko PV, Adameyko I. Spatiotemporal structure of cell fate decisions in murine neural crest. Science 2019;364:eaas9536 
  51. Wilson YM, Richards KL, Ford-Perriss ML, Panthier JJ, Murphy M. Neural crest cell lineage segregation in the mouse neural tube. Development 2004;131:6153-6162 
  52. Achilleos A, Trainor PA. Neural crest stem cells: discovery, properties and potential for therapy. Cell Res 2012;22:288-304 
  53. Le Douarin NM. The avian embryo as a model to study the development of the neural crest: a long and still ongoing story. Mech Dev 2004;121:1089-1102 
  54. Lee G, Kim H, Elkabetz Y, Al Shamy G, Panagiotakos G, Barberi T, Tabar V, Studer L. Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells. Nat Biotechnol 2007;25:1468-1475 Erratum in: Nat Biotechnol 2008;26:831 
  55. Lee G, Chambers SM, Tomishima MJ, Studer L. Derivation of neural crest cells from human pluripotent stem cells. Nat Protoc 2010;5:688-701 
  56. Monje PV. Schwann cell cultures: biology, technology and therapeutics. Cells 2020;9:1848 
  57. Huang CW, Huang WC, Qiu X, Fernandes Ferreira da Silva F, Wang A, Patel S, Nesti LJ, Poo MM, Li S. The differentiation stage of transplanted stem cells modulates nerve regeneration. Sci Rep 2017;7:17401 
  58. Kreitzer FR, Salomonis N, Sheehan A, Huang M, Park JS, Spindler MJ, Lizarraga P, Weiss WA, So PL, Conklin BR. A robust method to derive functional neural crest cells from human pluripotent stem cells. Am J Stem Cells 2013;2:119-131 
  59. Liu Q, Spusta SC, Mi R, Lassiter RN, Stark MR, Hoke A, Rao MS, Zeng X. Human neural crest stem cells derived from human ESCs and induced pluripotent stem cells: induction, maintenance, and differentiation into functional schwann cells. Stem Cells Transl Med 2012;1:266-278 
  60. Wang A, Tang Z, Park IH, Zhu Y, Patel S, Daley GQ, Li S. Induced pluripotent stem cells for neural tissue engineering. Biomaterials 2011;32:5023-5032 
  61. Ziegler L, Grigoryan S, Yang IH, Thakor NV, Goldstein RS. Efficient generation of schwann cells from human embryonic stem cell-derived neurospheres. Stem Cell Rev Rep 2011;7:394-403 
  62. Kim HS, Lee J, Lee DY, Kim YD, Kim JY, Lim HJ, Lim S, Cho YS. Schwann cell precursors from human pluripotent stem cells as a potential therapeutic target for myelin repair. Stem Cell Reports 2017;8:1714-1726 
  63. Huang Z, Powell R, Phillips JB, Haastert-Talini K. Perspective on Schwann cells derived from induced pluripotent stem cells in peripheral nerve tissue engineering. Cells 2020;9:2497 
  64. Hopf A, Schaefer DJ, Kalbermatten DF, Guzman R, Madduri S. Schwann cell-like cells: origin and usability for repair and regeneration of the peripheral and central nervous system. Cells 2020;9:1990 
  65. Papp B, Plath K. Epigenetics of reprogramming to induced pluripotency. Cell 2013;152:1324-1343 
  66. Guo G, von Meyenn F, Rostovskaya M, Clarke J, Dietmann S, Baker D, Sahakyan A, Myers S, Bertone P, Reik W, Plath K, Smith A. Epigenetic resetting of human pluripotency. Development 2017;144:2748-2763 Erratum in: Development 2018;145:dev166397 
  67. Berdasco M, Esteller M. DNA methylation in stem cell renewal and multipotency. Stem Cell Res Ther 2011;2:42 
  68. Papp B, Plath K. Reprogramming to pluripotency: stepwise resetting of the epigenetic landscape. Cell Res 2011;21:486-501 
  69. Wu H, Sun YE. Epigenetic regulation of stem cell differentiation. Pediatr Res 2006;59(4 Pt 2):21R-25R 
  70. Najm FJ, Lager AM, Zaremba A, Wyatt K, Caprariello AV, Factor DC, Karl RT, Maeda T, Miller RH, Tesar PJ. Transcription factor-mediated reprogramming of fibroblasts to expandable, myelinogenic oligodendrocyte progenitor cells. Nat Biotechnol 2013;31:426-433 
  71. Yang N, Zuchero JB, Ahlenius H, Marro S, Ng YH, Vierbuchen T, Hawkins JS, Geissler R, Barres BA, Wernig M. Generation of oligodendroglial cells by direct lineage conversion. Nat Biotechnol 2013;31:434-439 
  72. Kim JB, Lee H, Arauzo-Bravo MJ, Hwang K, Nam D, Park MR, Zaehres H, Park KI, Lee SJ. Oct4-induced oligodendrocyte progenitor cells enhance functional recovery in spinal cord injury model. EMBO J 2015;34:2971-2983 
  73. Mokhtarzadeh Khanghahi A, Satarian L, Deng W, Baharvand H, Javan M. In vivo conversion of astrocytes into oligodendrocyte lineage cells with transcription factor Sox10; promise for myelin repair in multiple sclerosis. PLoS One 2018;13:e0203785 
  74. Farhangi S, Dehghan S, Totonchi M, Javan M. In vivo conversion of astrocytes to oligodendrocyte lineage cells in adult mice demyelinated brains by Sox2. Mult Scler Relat Disord 2019;28:263-272 
  75. Liu C, Hu X, Li Y, Lu W, Li W, Cao N, Zhu S, Cheng J, Ding S, Zhang M. Conversion of mouse fibroblasts into oligodendrocyte progenitor-like cells through a chemical approach. J Mol Cell Biol 2019;11:489-495 
  76. Weider M, Wegener A, Schmitt C, Kuspert M, Hillgartner S, Bosl MR, Hermans-Borgmeyer I, Nait-Oumesmar B, Wegner M. Elevated in vivo levels of a single transcription factor directly convert satellite glia into oligodendrocyte-like cells. PLoS Genet 2015;11:e1005008 
  77. Yun W, Choi KA, Hwang I, Zheng J, Park M, Hong W, Jang AY, Kim JH, Choi W, Kim DS, Kim IY, Kim YJ, Liu Y, Yoon BS, Park G, Song G, Hong S, You S. OCT4-induced oligodendrocyte progenitor cells promote remyelination and ameliorate disease. NPJ Regen Med 2022;7:4 
  78. King HW, Klose RJ. The pioneer factor OCT4 requires the chromatin remodeller BRG1 to support gene regulatory element function in mouse embryonic stem cells. Elife 2017;6:e22631 
  79. Soufi A, Garcia MF, Jaroszewicz A, Osman N, Pellegrini M, Zaret KS. Pioneer transcription factors target partial DNA motifs on nucleosomes to initiate reprogramming. Cell 2015;161:555-568 
  80. Dehghan S, Hesaraki M, Soleimani M, Mirnajafi-Zadeh J, Fathollahi Y, Javan M. Oct4 transcription factor in conjunction with valproic acid accelerates myelin repair in demyelinated optic chiasm in mice. Neuroscience 2016;318:178-189 
  81. Matjusaitis M, Wagstaff LJ, Martella A, Baranowski B, Blin C, Gogolok S, Williams A, Pollard SM. Reprogramming of fibroblasts to oligodendrocyte progenitor-like cells using CRISPR/Cas9-based synthetic transcription factors. Stem Cell Reports 2019;13:1053-1067 
  82. Sowa Y, Kishida T, Tomita K, Yamamoto K, Numajiri T, Mazda O. Direct conversion of human fibroblasts into Schwann cells that facilitate regeneration of injured peripheral nerve in vivo. Stem Cells Transl Med 2017;6:1207-1216 
  83. Mazzara PG, Massimino L, Pellegatta M, Ronchi G, Ricca A, Iannielli A, Giannelli SG, Cursi M, Cancellieri C, Sessa A, Del Carro U, Quattrini A, Geuna S, Gritti A, Taveggia C, Broccoli V. Two factor-based reprogramming of rodent and human fibroblasts into Schwann cells. Nat Commun 2017;8:14088 
  84. Jang SW, Svaren J. Induction of myelin protein zero by early growth response 2 through upstream and intragenic elements. J Biol Chem 2009;284:20111-20120 
  85. LeBlanc SE, Ward RM, Svaren J. Neuropathy-associated Egr2 mutants disrupt cooperative activation of myelin protein zero by Egr2 and Sox10. Mol Cell Biol 2007;27:3521-3529 
  86. Kim HS, Kim JY, Song CL, Jeong JE, Cho YS. Directly induced human Schwann cell precursors as a valuable source of Schwann cells. Stem Cell Res Ther 2020;11:257 
  87. Nau MM, Brooks BJ, Battey J, Sausville E, Gazdar AF, Kirsch IR, McBride OW, Bertness V, Hollis GF, Minna JD. L-myc, a new myc-related gene amplified and expressed in human small cell lung cancer. Nature 1985;318:69-73 
  88. Peng S, Maihle NJ, Huang Y. Pluripotency factors Lin28 and Oct4 identify a sub-population of stem cell-like cells in ovarian cancer. Oncogene 2010;29:2153-2159 
  89. Bass AJ, Watanabe H, Mermel CH, Yu S, Perner S, Verhaak RG, Kim SY, Wardwell L, Tamayo P, Gat-Viks I, Ramos AH, Woo MS, Weir BA, Getz G, Beroukhim R, O'Kelly M, Dutt A, Rozenblatt-Rosen O, Dziunycz P, Komisarof J, Chirieac LR, Lafargue CJ, Scheble V, Wilbertz T, Ma C, Rao S, Nakagawa H, Stairs DB, Lin L, Giordano TJ, Wagner P, Minna JD, Gazdar AF, Zhu CQ, Brose MS, Cecconello I, Ribeiro U Jr, Marie SK, Dahl O, Shivdasani RA, Tsao MS, Rubin MA, Wong KK, Regev A, Hahn WC, Beer DG, Rustgi AK, Meyerson M. SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet 2009;41:1238-1242 
  90. Kilmister EJ, Patel J, Bockett N, Chang-McDonald B, Sim D, Wickremesekera A, Davis PF, Tan ST. Embryonic stem cell-like subpopulations are present within Schwannoma. J Clin Neurosci 2020;81:201-209 
  91. Kristensen BW, Priesterbach-Ackley LP, Petersen JK, Wesseling P. Molecular pathology of tumors of the central nervous system. Ann Oncol 2019;30:1265-1278 
  92. Soussi T. The p53 tumor suppressor gene: from molecular biology to clinical investigation. Ann N Y Acad Sci 2000;910:121-137; discussion 137-139 
  93. LeBleu VS, Neilson EG. Origin and functional heterogeneity of fibroblasts. FASEB J 2020;34:3519-3536 
  94. Mateu R, Zivicova V, Krejci ED, Grim M, Strnad H, Vlcek C, Kolar M, Lacina L, Gal P, Borsky J, Smetana K Jr, Dvorankova B. Functional differences between neonatal and adult fibroblasts and keratinocytes: donor age affects epithelial-mesenchymal crosstalk in vitro. Int J Mol Med 2016;38:1063-1074 
  95. Chipev CC, Simon M. Phenotypic differences between dermal fibroblasts from different body sites determine their responses to tension and TGFbeta1. BMC Dermatol 2002;2:13 
  96. Thoma EC. Chemical conversion of human fibroblasts into functional Schwann cells. Methods Mol Biol 2018;1739:127-136 
  97. Kitada M, Murakami T, Wakao S, Li G, Dezawa M. Direct conversion of adult human skin fibroblasts into functional Schwann cells that achieve robust recovery of the severed peripheral nerve in rats. Glia 2019;67:950-966 
  98. Porciuncula LO, Goto-Silva L, Ledur PF, Rehen SK. The age of brain organoids: tailoring cell identity and functionality for normal brain development and disease modeling. Front Neurosci 2021;15:674563 
  99. Kim J, Sullivan GJ, Park IH. How well do brain organoids capture your brain? iScience 2021;24:102063 
  100. Marton RM, Miura Y, Sloan SA, Li Q, Revah O, Levy RJ, Huguenard JR, Pasca SP. Differentiation and maturation of oligodendrocytes in human three-dimensional neural cultures. Nat Neurosci 2019;22:484-491 
  101. Abud EM, Ramirez RN, Martinez ES, Healy LM, Nguyen CHH, Newman SA, Yeromin AV, Scarfone VM, Marsh SE, Fimbres C, Caraway CA, Fote GM, Madany AM, Agrawal A, Kayed R, Gylys KH, Cahalan MD, Cummings BJ, Antel JP, Mortazavi A, Carson MJ, Poon WW, Blurton-Jones M. iPSC-derived human microglia-like cells to study neurological diseases. Neuron 2017;94:278-293.e9