
INTRODUCTION 

The annual incidence of primary anatomical and reverse shoul-
der arthroplasty (RSA) procedures performed in the United 
States has increased by 103.7% between 2011 to 2017, with the 
incidence of RSA increasing 191.3% over the same time period 
[1]. Though reproducible and efficacious procedures for gleno-
humeral osteoarthritis, rotator cuff arthropathy, and proximal 
humerus fractures, studies examining the outcomes of both ana-
tomical total shoulder arthroplasty (TSA) and RSA at long-term 
follow-up report average revision rates of approximately 8%–10% 

Radiographic osteolysis after total shoulder arthroplasty (TSA) remains a challenging clinical entity, as it may not initially manifest clinical-
ly apparent symptoms but can lead to clinically important complications, such as aseptic loosening. A thorough consideration of medical 
history and physical examination is essential to rule out other causes of symptomatic TSA—namely, periprosthetic joint infection—as 
symptoms often progress to vague pain or discomfort due to subtle component loosening. Once confirmed, nonoperative treatment of os-
teolysis should first be pursued given the potential to avoid surgery-associated risks. If needed, the current surgical options include glenoid 
polyethylene revision and conversion to reverse shoulder arthroplasty. The current article provides a comprehensive review of the evalua-
tion and management of osteolysis after TSA through an evidence-based discussion of current concepts. 
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[2-4]. Radiographic osteolysis and glenoid loosening are the 
most common complications after TSA, accounting for 80% of 
TSA complications and 7% of revision operations, respectively, 
while humeral loosening accounts for a much smaller 7% of 
long-term TSA complications [5]. Therefore, a comprehensive 
understanding of the mechanisms leading to osteolysis and care-
ful evaluation of patients presenting with osteolysis after TSA is 
critical. 

Gradual osteolysis around the glenoid or humeral components 
and loosening of either the glenoid or humeral components can 
result in instability and loss of function [6]. Furthermore, osteol-
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ysis with or without component loosening may be a primary 
cause of pain, necessitating revision [7]. Therefore, osteolysis 
around the glenoid or humeral components is not a clinically in-
significant entity, as it may lead to additional morbidity and 
health resource utilization. Despite this knowledge, a compre-
hensive resource of management options and current concepts in 
addressing these adverse events is lacking. As such, it is impera-
tive for the most recent literature pertaining to the evaluation 
and management of osteolysis after TSA to be synthesized and 
reviewed to better understand the available options for this chal-
lenging clinical scenario and optimize patient outcomes.  

The purpose of the current article is to present a comprehen-
sive review of the current concepts in the pathogenesis, evalua-
tion, and management of osteolysis after anatomical TSA and 
RSA. In the first half of this article, the pathogenesis of osteolysis 
and the evolution in implant design intended to avoid osteolysis 
are presented. In the second half of this article, we discuss our 
approach to evaluating and managing osteolysis treatment 
through an evidence-based analysis of the literature. 

This study did not require approval by the institutional review 
board at the Hospital for Special Surgery. And, consent was not 
required for any aspects of this study. 

PATHOGENESIS OF OSTEOLYSIS 

Implant Wear and Immune Response 
Implant wear occurs primarily at the articular interface, generat-
ing debris that results in the destruction of surrounding tissue 
secondary to inflammation. The destruction is two-fold: damage 
to the articulating surface of the prosthesis can be detrimental to 
implant stability, and the debris generated by implant wear can 
drive inflammation [8]. Debris may originate from multiple im-
plant compositions, including polyethylene, metal, and cement. 
Generated debris can then implant on the articular surface of a 
polyethylene prosthesis, further exacerbating implant wear by 
enhancing abrasion [9]. 

Phagocytosis of debris less than twelve 12 µmmicrometers in 
diameter by macrophages underlies the primary pathogenesis of 
periprosthetic osteolysis; however, the specific inflammatory re-
sponse is dictated by the quantity and quality of the particulates 
regarding size, surface area, and composition. Further, the rela-
tive concentration of debris, rather than simply the number of 
particles, dictates the magnitude of the inflammatory response 
[10,11]. Macrophage stimulation after debris phagocytosis results 
in the release of tumor necrosis factor-alpha (TNF-α), interleukin 
(IL)-1β, and IL-6. TNF-α and IL-6 are catabolic mediators in 
bone, and IL-1β induces the differentiation of osteoclasts and the 

production of matrix metalloproteinases that promote bone re-
sorption [11,12]. Polyethylene debris is also associated with com-
plement (CR3) activation, resulting in more macrophage recruit-
ment [13]. 

Cement debris resulting in larger particulates not amenable to 
phagocytosis is associated with giant cell recruitment and toll-
like receptor (TLR) stimulation, which, in turn, activates the in-
flammatory nuclear factor kappa-light-chain-enhancer of acti-
vated B cells (NF-κB) cascade [14]. The receptor activator of nu-
clear factor-kappa-Β (RANK) and its ligand (RANKL) bind on 
preosteoclasts, stimulating osteoclastogenesis via the NF-κB 
transcription factor pathway and, in turn, causing bony resorp-
tion. As such, NF-κB is the transcription factor most commonly 
implicated in osteolysis; it is activated by several mechanisms, in-
cluding those mediated by TLRs, TNF-α, and IL-1 [15,16]. In 
summary, periprosthetic osteolysis, characterized by concomitant 
inflammation, fibrosis, and bony resorption, occurs as an aseptic 
chronic inflammatory response to intra- and periarticular debris. 

Histology 
Histologic findings of periprosthetic osteolysis include inflam-
matory cells (lymphocytes, histiocytes, plasma cells, giant cells, 
and macrophages), which may contain identifiable particulate 
debris; clefts containing strongly birefringent polyethylene de-
bris; and scalloped edges where cement has been resorbed. Inter-
estingly, Kepler et al. [9] reported no significant difference in the 
frequency of polyethylene debris between patients with and 
without osteolysis after anatomical TSA (62% vs. 67%), indicat-
ing that the presence of particles alone is not predictive of osteol-
ysis [9]. In cases of osteolysis in the absence of debris on histo-
logic analysis, the pathogenesis of bone loss is currently un-
known. 

Detritic synovitis is an inflammatory response to intraarticular 
debris, which causes more widespread osteolysis beyond the 
periprosthetic space, resulting in implant loosening or pathologic 
fracture [17]. Known to cause implant failure in hip, hand, and 
foot arthroplasty, detritic synovitis leading to osteolysis after ana-
tomical TSA was first described in 2018 [17-19]. Guild et al. [20] 
described an inflammatory foreign body reaction to polyethylene 
implant wear resulting in osteolysis; histopathologic analysis 
found multinucleated giant cell and histiocyte infiltrates and po-
larizable debris resulting from the destruction of bone and joint 
tissue. Detritic synovitis and periprosthetic osteolysis share many 
histological characteristics; however, the scope of their conse-
quences differs given the relative lack of geographic limitation 
seen in detritic synovitis. 
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MICROMOTION 

High amplitude micromotion increases the abhorrent space be-
tween the prosthesis and bone, resulting in fibrous ingrowth [21]. 
Though the threshold at which micromotion may be of benefit is 
contested [21-23], the enlarged periprosthetic space seen with 
higher amplitude micromotion allows for a less coherent 
bone-implant interface where synovial fluid and wear particles 
may enter and stimulate inflammation, causing bony resorption, 
further weakening the bone stock via osteolysis and promoting 
further implant loosening [24]. 

Several biomechanical studies have investigated the implica-
tions of high amplitude micromotion on the glenoid component 
in both anatomical TSA and RSA, although in vivo analyses are 
scarce. Sabesan et al. [25] created a biomechanical model to study 
the influence of increasing glenohumeral implant mismatch on 
bone-implant interface micromotion. The authors reported that 
a radial mismatch of greater than 10 mm between glenohumeral 
components increased the micromotion of an all-polyethylene 
pegged glenoid component. Bonnevialle et al. [26] reported 20–
130 µm of micromotion was found across three separate modern 
RSA glenoid baseplates, demonstrating that adequate stability 
was achieved by all models on finite element analysis. Lung et al. 
[27] found that decreased micromotion of the RSA glenoid base-
plate was associated with longer central pegs and longer periph-
eral screws in general, but no absolute arrangement of screws ap-
pears to be superior in optimizing RSA baseplate fixation and 
decreasing micromotion [28,29]. Chou et al. [30] reported in-
creased micromotion with the use of eccentric glenospheres in 
RSA when compared to the same-sized concentric design, al-
though eccentric designs were still associated with micromotion 
amplitudes in the range in which bony ingrowth was possible. 
Together, these results suggest that, while osteolysis and aseptic 
glenoid loosening remain the most common reason for failure 
after anatomical TSA, primary micromotion of the glenoid com-
ponent is a much less common cause of failure when modern 
RSA designs are implemented. 

NOTCHING 

Notching of the inferior border of the scapula was historically a 
considerable source of osteolysis in RSA, though the develop-
ment of lateralized glenospheres and increased awareness of the 
importance of glenoid positioning has decreased the incidence of 
this phenomenon. Mechanical notching is described as repetitive 
contact between the humeral implant and scapula, leading to 
progressive abrasive wear [31]. This wear often leads to biological 

notching, whereby debris is generated through active osteolysis 
that may further accelerate notching [32]. With continued notch-
ing and osteolysis, catastrophic failure of the glenoid component 
fixation can occur [33]. 

Implant Components and Design 
Variations in component composition, component positioning, 
and stem length have been the mainstay approach to reducing 
implant wear and associated debris, inflammation, and osteoly-
sis. Cemented all-polyethylene glenoid components are associat-
ed with 83% or greater survival rates at year 10 of follow-up; 
however, wear and revision rates vary between polyethylene 
models [34,35]. Cross-linked polyethylene has been associated 
with an 85% reduction in wear rates relative to traditional poly-
ethylene components as well as lower revision rates at year 5 of 
follow-up [36,37]. Metal-backed glenoid components are associ-
ated with substantially lower survival rates at long-term fol-
low-up than all-polyethylene glenoid components, with failure 
attributed to aseptic loosening in the all-polyethylene group and 
rotator cuff insufficiency and instability in the metal-backed 
group [38]. Hybrid glenoid implants, which feature porous metal 
central posts and no metal backing to the glenoid surface, have 
not been associated with significant differences in complication 
rates at year 3 of follow-up relative to all-polyethylene implants 
[39]. Friedman et al. [40] report that the hybrid glenoid compo-
nent is superior to the all-polyethylene implants with regard to 
3-year revision rates, though longer-term investigations on the 
longevity of these implants are still needed. 

Research investigating the means to reduce osteolysis sur-
rounding humeral implants has largely focused on stem length 
and implant composition. Bell et al. [41] demonstrated decreased 
rates of radiolucent lines and humeral osteolysis in stemless ce-
ramic humeral components when compared to long-stem met-
al-head alternatives. Long-stem designs are associated with stress 
shielding of the proximal humeral metaphysis, resulting in in-
creased bone resorption, while the opposite is true for stemless 
humeral component designs. Indeed, stemless designs have been 
demonstrated to better mimic intact bone [42,43]. Investigations 
of humeral implant composition have demonstrated a decreased 
wear rate associated with ceramic humeral heads when com-
pared to metallic components [44]. 

CLINICAL EVALUATION 

History and Physical Exam 
Comprehensive postoperative follow-up and physical evaluation 
should be performed in the setting of new-onset pain following 

https://doi.org/10.5397/cise.2021.00738246

Kyle N. Kunze, et al.  Osteolysis and TSA



TSA regardless of the time from the index procedure. The most 
sensitive indicator of osteolysis following TSA is new-onset or 
persistent pain [9]. However, postoperative pain is non-specific 
and should prompt a comprehensive evaluation of other etiolo-
gies. Other considerations that may induce pain after TSA in-
clude periprosthetic infection, periprosthetic fracture, stiffness, 
rotator cuff pathology, heterotopic ossification, bursitis, and 
malalignment. It should be determined whether the pain is asso-
ciated with weakness or decreased motion, as this may leverage 
insight into additional shoulder stabilizer involvement and dis-
placement of the glenoid or humeral components. 

Importantly, the timing, quality, responsiveness, location, and 
duration of symptoms can provide more insight into the poten-
tial pathology. For example, pain secondary to glenoid or humer-
al osteolysis is generally experienced when sleeping or first initi-
ating movement (start-up pain) of the shoulder and is diffuse in 
nature, whereas well-localized pain over the posterosuperior as-
pect of the shoulder may represent an acromial stress fracture. 
Pain in the proximal part of the upper extremity can indicate hu-
meral component loosening. Patients should also be asked about 
wound issues and drainage after the index surgery, as this may 
elevate indolent infection as a cause of symptoms. Concern for 
possible osteolysis and aseptic loosening should be raised for pa-
tients who report years of symptom-free shoulder function post-
operatively followed by new-onset pain or reduced function. 

The physical exam should be performed systematically and in-
clude inspection, palpation, range of motion, strength, and 
provocative maneuvers where appropriate. Specifically, the surgi-
cal incision and skin around the shoulder should be assessed. 
The presence of effusion, erythema, or swelling may indicate 
chronic inflammation or infection. Diffuse tenderness to palpa-
tion around all areas of the shoulder in the absence of other find-
ings may signify a chronic pain syndrome. 

The extent of passive and active range of motion should be as-
sessed, with particular attention directed towards instability, im-
pingement, or pain along short arcs of motion. Patients with os-
teolysis that begin to experience early subsidence may experience 
loss of function. Atrophy or deformity in the setting of a primary 
anatomical TSA may suggest compromise of the rotator cuff. Fi-
nally, a thorough neurovascular exam should be assessed to rule 
out neurovascular compromise as the etiology of pain and dys-
function.  

Though osteolysis is characteristically a chronic process asso-
ciated with night or start-up pain, it is notable that early osteoly-
sis may manifest non-characteristic symptoms. Therefore, in the 
setting of painful TSA, early osteolysis should still be considered 
with a thorough evaluation of routine radiographic imaging. In-

deed, early osteolysis that is rapidly progressive without identifi-
cation and treatment can result in glenoid loosening, subsidence, 
and early failure. 

In all scenarios where a patient presents with a painful TSA, 
standard laboratory testing including complete blood count, 
erythrocyte sedimentation rate, and C-reactive protein measure-
ment should be obtained. If these raise suspicion for infection, 
such as if the synovial leukocyte count exceeds 2,000 and is com-
posed of at least 70% polymorphonuclear leukocytes [45], an ul-
trasound-guided shoulder aspiration is warranted. However, in 
cases with a high index of suspicion for infection but negative 
laboratory and aspiration work-up, arthroscopic or open tissue 
biopsy is considered a gold standard diagnostic tool for infection. 
If periprosthetic joint infection has been ruled out, osteolysis and 
aseptic loosening then rise among the differential diagnoses as 
the culprit of shoulder pain [46]. 

Radiographic Evaluation 
Postoperative radiographs are the first-line imaging modality to 
evaluate for osteolysis in the proximity of either the glenoid or 
humeral components. Standard views of the shoulder, including 
anteroposterior, Grashey, lateral, and axillary views, should be 
obtained. The examiner should evaluate radiographs for radiolu-
cencies and stress shielding adjacent to the glenoid and humeral 
components. Comparison to prior radiographs should be made 
when available, particularly when monitoring the progression of 
previously diagnosed osteolysis. The examiner may observe im-
plant loosening, malpositioning, or subsidence. Particular atten-
tion should be focused on the location of the humeral head, as 
proximal migration may indicate a supraspinatus tear, and ante-
rior displacement may suggest a tear of the subscapularis. 

In non-cemented humeral components, radiolucent lines often 
occur at the tip of the prosthesis, whereas radiolucencies com-
monly develop along the proximal and midbody aspects of the 
stem in cemented humeral components. In some smaller series 
with 10 years of follow-up, over 50% of patients developed radio-
lucencies, most often in association with glenoid wear and poly-
ethylene debris [47]. However, the clinical significance of osteol-
ysis remains unclear in certain populations, as asymptomatic pa-
tients with osteolysis do not always require a revision procedure 
[48]. 

It also appears that the choice of humeral fixation technique is 
not associated with osteolysis on radiographs. A recent random-
ized controlled trial with a mean 38-month follow-up period re-
ported a 0.74% incidence of radiolucencies ≥ 2 mm in three or 
more zones, which did not significantly differ between cemented 
and non-cemented humeral component cohorts [49]. Scapular 
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notching may be a more obvious finding of progressive osteoly-
sis. In a 10-year follow-up study of patients treated with a Gram-
mont-style RSA, 73% of patients developed scapular notching on 
radiographs, with 12% having undergone revision surgery [50]. 

Unfortunately, radiolucent lines on plain radiographs do not 
always reliably diagnose loosening, particularly during long-term 
follow-up, as some series report the presence of radiolucent lines 
in up to 80% of radiographs at 10 years of follow-up [51]. There-
fore, it may be more appropriate to evaluate radiolucent line pro-
gression over time, as opposed to making a definitive plan of care 
based on a single observation. Advanced imaging appears to be 
more sensitive than radiography at detecting radiolucency. Re-
cent studies have demonstrated that the reliability of computed 
tomography (CT)-based assessments of radiolucencies is three 
times higher than that of radiographs, and up to 40% of radiolu-
cent lines and 74% of osteolysis cases not observed on radio-
graphs are detectable by CT [51,52]. 

In cases of osteolysis following RSA, notching of the polyeth-
ylene liner against the inferior border of the scapula should be 
assessed. This mechanical impingement can potentially lead to a 
high level of particulate debris, leading to osteolysis in both the 
glenoid and the humerus. In severe cases, significant osteolysis 
can occur at the inferior glenoid, directly affecting baseplate fixa-
tion. In the evaluation of osteolysis after RSA, component mal-
position should be recognized early and potentially revised to 
prevent further osteolysis. 

TREATMENT OPTIONS AND CLINICAL 
OUTCOMES 

It is important to remember that osteolysis is a biological phe-
nomenon rather than a clinical condition. Osteolysis, in and of 
itself, is frequently an asymptomatic finding identified in routine 
postoperative imaging. For patients without clinical symptoms 
who present with imaging findings of mild osteolysis, nonopera-
tive management with close follow-up is appropriate. Serial clini-
cal and radiographic evaluations are recommended to identify 
the early development of symptoms and radiographic evidence 
of osteolysis progression or implant loosening. 

Surgical management of osteolysis is reserved for patients who 
manifest clinical symptoms directly attributable to osteolysis and 
aseptic loosening, such as pain, dysfunction, or shoulder instabil-
ity, in the absence of an active or indolent infection. A particular 
treatment strategy must consider (1) the size, location, and chro-
nicity of osteolysis; (2) the suspected source of loosening (i.e., 
glenoid vs. humeral component, as well as component malposi-
tioning); (3) the patient’s primary subjective complaint; and (4) 

the patient’s functional status. The task of identifying an appro-
priate treatment is made challenging by the paucity of high-level, 
direct comparative studies of available treatment options. Given 
that the existing surgical treatments vary in invasiveness and the 
anticipated duration of recovery and that revision shoulder ar-
throplasty outcomes are generally inferior to the outcomes of 
primary arthroplasty, a shared decision-making process is essen-
tial to ensure that the chosen intervention matches the patient’s 
goals and expectations (Fig. 1). 

Management of Osteolysis and Aseptic Loosening 
Following Anatomical TSA 
For patients with symptomatic osteolysis and evidence of glenoid 
loosening following anatomical TSA or RSA, nonoperative treat-
ment is generally reserved only for patients that are poor surgical 
candidates and medically unfit for surgery. This approach relies 
on secondary stabilizers to maintain the functional integrity of 
the shoulder. To solidify the surrounding soft tissue architecture, 
nonoperative treatment consists of a 4–6-week period of sling 
immobilization during which active and passive range of motion 
are deferred. Whereas all surgical treatment options to be dis-
cussed in this article carry a significant risk for complications, 
non-surgical management mitigates the risk of surgery-related 
complications. In a retrospective analysis of 79 patients diag-
nosed with aseptic glenoid loosening following RSA, Lädermann 
et al. [53] demonstrated that a sub-group of 29 shoulders treated 
nonoperatively had similar clinical improvements and fewer as-
sociated complications compared to a group of 27 shoulders that 
underwent revision. Furthermore, in similar cohorts of patients, 
nonoperative treatment resulted in better clinical outcome scores 
than revision to hemiarthroplasty. 

Arthroscopic Glenoid Polyethylene Removal 
In postoperative anatomical TSA patients with isolated aseptic 
glenoid loosening and suspected infection, arthroscopic removal 
of the polyethylene glenoid component offers an appealing surgi-
cal option [54,55]. Given the high suspicion for periprosthetic 
infection and concurrent difficulty in diagnosing indolent Cuti-
bacterium acnes infection in this clinical scenario, an arthroscop-
ic procedure enables the clinician to obtain intraoperative tissue 
samples to aid in diagnosis while performing a minimally-inva-
sive glenoid resection that may provide significant symptomatic 
relief. Removal of the polyethylene component reduces debris 
created by contact between the glenoid component and the adja-
cent metal and bone [54]. To address cavitary bone defects 
caused by prior osteolysis, bone graft, in the form of corticocan-
cellous bone chips, can be introduced arthroscopically through 
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an enlarged anterosuperior portal and tamped into the glenoid 
cavity until the void is filled [56]. The use of a human dermal al-
lograft patch has been described to help contain the bone graft 
within the defect [56]. Clinical outcome data regarding dermal 
allograft procedures have yet to be published. However, the avail-
able literature supports the use of isolated arthroscopic glenoid 
resection. Indeed, a cohort of 15 patients who underwent glenoid 
component resection with or without bone grafting had compa-
rable pain relief and satisfaction at 2 years postoperatively in 
comparison to patients that underwent glenoid reimplantation 
[57]. Given that the authors noted a selection bias in that low-
er-demand patients were more likely to undergo an isolated gle-
noid component resection, further evidence is needed to delin-
eate the optimal patient characteristics for this intervention. 
Nonetheless, in patients whose clinical presentation remains 
concerning but non-diagnostic for infection, an arthroscopic gle-
noid component resection with tissue culture procurement is a 
reasonable temporizing option. 

Revision TSA with Polyethylene Glenoid Reimplantation 
Another commonly employed surgical treatment option for 
aseptic glenoid loosening following anatomical TSA is revision 

anatomical TSA with reimplantation of another polyethylene 
glenoid [58]. The greater potential shoulder range of motion 
conferred by an anatomical TSA, in comparison to that of an 
RSA, has made this an enticing revision option, particularly in 
younger patients [59,60]. In an early report of outcomes from 
this intervention, Cheung et al. [61] compared 33 shoulders with 
glenoid reimplantation to 35 shoulders with glenoid implant re-
moval and bone grafting. Five-year postoperative outcome data 
demonstrated a 91% reoperation-free survival and higher satis-
faction in patients that underwent reimplantation compared to 
those that underwent implant removal and bone grafting. How-
ever, in subsequent work, the authors conceded that these find-
ings might have been confounded by the inclusion of infected ar-
throplasty cases in their analysis [62]. Subsequent studies have 
demonstrated that revision anatomical TSA indicated for glenoid 
loosening has been fraught with complications. In one analysis of 
42 patients with symptomatic glenoid loosening following a pri-
mary anatomical TSA who underwent an isolated glenoid ex-
change, 67% of patients had recurrence of glenoid loosening, and 
17% required reoperation at approximately year 6 of follow-up 
[63]. Sheth et al. [64] corroborated the disappointing results of 
revision anatomical TSA in a cohort of 20 patients, reporting that 

Shoulder pain after TSA

Initial assessment

Physical examination
Radiographic assessment

CBC, ESR, CRP

Irrigation and debridement with 
antibiotic therapy versus explant 
and staged exchange depending 

on chronicity

Revision to reverse shoulder 
arthroplasty

Revision anatomical TSA 
with polyethylene exchange

Bone graft or revision to 
custom or cemented humeral 

component

Follow-up and serial 
imaging

Reduction or urgent 
surgery

Dislocated or evidence of 
periprosthetic fracture

No urgent or emergent concern

Infected?

Presence of radiographic osteolysis 
or loosening with symptoms

No functional deficits or instability

Isolated humeral osteolysisGlenoid +/- humeral osteolysis

Deficient rotator cuff Intact rotator cuff

Presence of radiographic osteolysis or 
loosening with symptoms

Yes No

Fig. 1. Proposed treatment algorithm for the evaluation and management of patients with osteolysis after total shoulder arthroplasty (TSA). 
CBC: complete blood count, ESR: erythrocyte sedimentation rate, CRP: C-reactive protein.

249https://doi.org/10.5397/cise.2021.00738

Clin Shoulder Elbow 2022;25(3):244-254



35% required reoperation within 3 years of revision surgery. The 
poor clinical outcomes and increased complications associated 
with revision anatomical TSA and isolated glenoid component 
exchange make its contemporary use in the current treatment of 
glenoid component loosening relatively minimal. 

Conversion to RSA 
In the setting of a failed anatomical TSA due to osteolysis or gle-
noid component loosening, conversion to RSA affords several 
advantages over revision anatomical TSA (Fig. 2). Whereas ana-
tomical TSA requires an intact and functioning rotator cuff for 
optimal outcomes, RSA outcomes can be satisfactory even with 
rotator cuff deficiency, which is often present in patients under-
going revision shoulder arthroplasty [65]. Second, on the glenoid 
side, RSA allows for both stronger fixation with screws and posts, 
as well as bony ingrowth for greater potential implant longevity 
[65]. Third, RSA allows the surgeon to not only address the 
aforementioned bone loss with the increasing popularity of aug-
mented baseplates [66]. The available clinical evidence bores out 
these advantages. A multicenter study of 37 anatomical TSAs re-
vised to RSA for aseptic glenoid loosening demonstrated an 86% 
patient satisfaction rate at approximately year 4 of follow-up [67]. 
The authors reported a 21% reoperation rate and, therefore, cau-
tioned that, despite a high satisfaction rate, patients must be 
counseled on the elevated risks of reoperation compared with an 
index operation. Currently, RSA affords the most predictable 
surgical solution for symptomatic aseptic loosening and osteoly-
sis following shoulder arthroplasty. Further elucidation of opti-
mal patient candidates and long-term clinical outcomes of RSA 
used in this setting are needed.  

Osteolysis Involving the Humeral Component
Humeral component loosening secondary to osteolysis sur-
rounding the humeral implant is exceedingly rare. In a radio-
graphic study of 395 shoulders that previously underwent either 
hemiarthroplasty or total arthroplasty, 43% of shoulders demon-
strated evidence of osteolysis at either the greater tuberosity or 
calcar [48]. Despite this, humeral component loosening was not 
observed in any of the uncemented stems, and only one cement-
ed stem was deemed to be at risk for humeral loosening based on 
the morphology of radiolucent lines surrounding the implant. In 
the single published case series on the management of humeral 
component aseptic loosening, Cil et al. [68] reported on 38 cases 
over a nearly 30-year period. The authors used cancellous bone 
grafting to treat contained proximal humerus osteolysis in ap-
proximately one-third of cases. Due to more extensive bone loss, 
custom humeral stem implants were employed in two cases. At 
revision, cement humeral fixation was utilized in approximately 
75% of cases. Some authors postulate that the expanded use of 
stemless humeral implants in shoulder arthroplasty will further 
minimize the risk of proximal humerus osteolysis; however, fur-
ther studies are needed to evaluate the impact of stemless humer-
al designs [69]. 

Management of Osteolysis and Aseptic Loosening 
Following RSA 
There are limited data available to guide clinicians in the man-
agement of aseptic glenoid loosening following RSA. As men-
tioned, nonoperative treatment should be pursued as a first-line 
treatment option in minimally symptomatic patients. For pa-
tients unable to tolerate nonoperative management, glenoid loos-

Fig. 2. Eighty-year-old male with a prior surgical history of left anatomical total shoulder arthroplasty (TSA) at an outside hospital in 2018 
who presented with 3 years of increasing left shoulder pain and discomfort, especially with physical activity. Physical examination demonstrat-
ed the skin over the left shoulder to be intact, and a well-healed surgical incision was observed. The range of motion was 80° of forward flex-
ion, 45° external rotation, and internal rotation to the L4 vertebrae. (A) Internal rotation, (B) external rotation, and (C) axillary, and (D) outlet 
radiographs at this time demonstrated a previous anatomical TSA with chronic bony remodeling of the glenoid and anterior dislocation of the 
humeral component with associated proximal humeral osteolysis. The patient was indicated to undergo conversion to an reverse shoulder ar-
throplasty.
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ening should be treated with revision of the glenosphere. Läder-
mann et al. [53] reviewed 79 patients treated for aseptic glenoid 
loosening. Among this cohort, patients treated nonoperatively, 
and those treated with glenoid revision experienced similar im-
provements in pain, range of motion, and clinical outcomes 
scores at a minimum 2-year follow-up. As the number of RSA 
procedures continues to grow, so too will our collective experi-
ence with managing its associated complications, including oste-
olysis and aseptic loosening. A select example demonstrating our 
institutional experience with the management of osteolysis after 
RSA is described in Fig. 3. 

CONCLUSION 

Osteolysis following primary TSA is a challenging clinical entity 
that causes up to 80% of complications. The pathogenesis of oste-
olysis is a macrophage-mediated response to debris from the 
TSA construct that is further facilitated by micromotion. A thor-
ough history and physical examination are essential to rule out 
other causes of symptomatic TSA—namely, periprosthetic joint 
infection. Though radiographs remain the gold standard imaging 
modality in this setting, they remain insensitive for detecting ra-
diolucent lines and early osteolysis, with limited evidence sug-
gesting that CT may be a more efficacious modality for diagnosis. 

Once confirmed, nonoperative treatment of osteolysis should 
first be pursued given the potential to avoid surgery-associated 
risks, and limited data suggesting outcomes may be similar to 
that of reoperations. Current options for reoperations include 
glenoid polyethylene revision and conversion to RSA. Future 
studies are warranted to better define the indications and long-
term outcomes of these procedures, though RSA currently ap-
pears to be the most reliable option given the evidence available. 
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