DOI QR코드

DOI QR Code

Revolution of nuclear energy efficiency, economic complexity, air transportation and industrial improvement on environmental footprint cost: A novel dynamic simulation approach

  • Ali, Shahid (School of Management Science and Engineering, Nanjing University of Information Science & Technology) ;
  • Jiang, Junfeng (School of Management Science and Engineering, Nanjing University of Information Science & Technology) ;
  • Hassan, Syed Tauseef (School of Business, Nanjing University of Information Science & Technology) ;
  • Shah, Ashfaq Ahmad (Research Center for Environment and Society, Hohai University)
  • Received : 2022.02.17
  • Accepted : 2022.05.21
  • Published : 2022.10.25

Abstract

The expansion of a country's ecological footprint generates resources for economic development. China's import bill and carbon footprint can be reduced by investing in green transportation and energy technologies. A sustainable environment depends on the cessation of climate change; the current study investigates nuclear energy efficiency, economic complexity, air transportation, and industrial improvement for reducing environmental footprint. Using data spanning the years 1983-2016, the dynamic autoregressive distributed lag simulation method has demonstrated the short- and long-term variability in the impact of regressors on the ecological footprint. The study findings revealed that economic complexity in China had been found to have a statistically significant impact on the country's ecological footprint. Moreover, the industrial improvement process is helpful for the ecological footprint in China. In the short term, air travel has a negative impact on the ecological footprint, but this effect diminishes over time. Additionally, energy innovation is negative and substantial both in the short and long run, thus demonstrating its positive role in reducing the ecological footprint. Policy implications can be extracted from a wide range of issues, including economic complexity, industrial improvement, air transportation, energy innovation, and ecological impact to achieve sustainable goals.

Keywords

Acknowledgement

This research is funded by the National Natural Science Foundation of China (71972153).

References

  1. A. Galli, T. Wiedmann, E. Ercin, D. Knoblauch, B. Ewing, S. Giljum, Integrating Ecological, Carbon and Water footprint into a "Footprint Family" of indicators: definition and role in tracking human pressure on the planet, Ecol. Indicat. 16 (2012) 100-112. https://doi.org/10.1016/j.ecolind.2011.06.017
  2. A. Das, N. Sethi, Modelling the environmental pollution-institutional quality nexus in low-and middle-income countries: exploring the role of financial development and educational level, Environ. Dev. Sustain. (2022) 1-27.
  3. Z. Wang, W. Huang, Z. Chen, The peak of CO2 emissions in China: a new approach using survival models, Energy Econ. 81 (2019) 1099-1108. https://doi.org/10.1016/j.eneco.2019.05.027
  4. Q. Wang, M. Zhao, R. Li, M. Su, Decomposition and decoupling analysis of carbon emissions from economic growth: a comparative study of China and the United States, J. Clean. Prod. 197 (2018) 178-184. https://doi.org/10.1016/j.jclepro.2018.05.285
  5. B.Wang Danish, Z. Wang, Imported technology and CO2 emission in China: collecting evidence through bound testing and VECM approach, Renew. Sustain. Energy Rev. 82 (2018) 4204-4214. https://doi.org/10.1016/j.rser.2017.11.002
  6. Bp, BP Statistical Review of World Energy, 2018, p. 1-56.
  7. O. Neagu, Economic complexity and ecological footprint: evidence from the most complex economies in the world, Sustainability 12 (2020) 9031. https://doi.org/10.3390/su12219031
  8. C.A. Hidalgo, B. Klinger, A.L. Barabasi, R. Hausmann, The product space conditions the development of nations, Science 317 (2007) 482-487. https://doi.org/10.1126/science.1144581
  9. C.A. Hidalgo, Economic complexity theory and applications, Nature Rev. Phys. 3 (2021) 92-113. https://doi.org/10.1038/s42254-020-00275-1
  10. G.D. Sharma, M.M. Rahman, M. Jain, R. Chopra, Nexus between energy consumption, information and communications technology, and economic growth: an enquiry into emerging Asian countries, J. Publ. Aff. 21 (2021), e2172. https://doi.org/10.1002/pa.2172
  11. E. Boleti, A. Garas, A. Kyriakou, A. Lapatinas, Economic complexity and environmental performance: evidence from a world sample, Environ. Model. Assess. 26 (2021) 251-270. https://doi.org/10.1007/s10666-021-09750-0
  12. U.K. Pata, Renewable and non-renewable energy consumption, economic complexity, CO 2 emissions, and ecological footprint in the USA: testing the EKC hypothesis with a structural break, Environ. Sci. Pollut. Control Ser. 28 (2021) 846-861. https://doi.org/10.1007/s11356-020-10446-3
  13. M. Sahoo, N. Sethi, The dynamic impact of urbanization, structural transformation, and technological innovation on ecological footprint and PM2.5: evidence from newly industrialized countries, Environ. Dev. Sustain. 24 (2022) 4244-4277. https://doi.org/10.1007/s10668-021-01614-7
  14. M. Umar, X. Ji, D. Kirikkaleli, A.A. Alola, The imperativeness of environmental quality in the United States transportation sector amidst biomass-fossil energy consumption and growth, J. Clean. Prod. 285 (2021), 124863. https://doi.org/10.1016/j.jclepro.2020.124863
  15. A.A. Chandio, M.I. Shah, N. Sethi, Z. Mushtaq, Assessing the effect of climate change and financial development on agricultural production in ASEAN-4: the role of renewable energy, institutional quality, and human capital as moderators, Environ. Sci. Pollut. Control Ser. 29 (2022) 13211-13225.
  16. A. Haldar, N. Sethi, Effect of institutional quality and renewable energy consumption on CO2 emissions-an empirical investigation for developing countries, Environ. Sci. Pollut. Res. Int. 28 (2021) 15485-15503. https://doi.org/10.1007/s11356-020-11532-2
  17. A. Haldar, N. Sethi, Environmental effects of Information and Communication Technology-Exploring the roles of renewable energy, innovation, trade and financial development, Renew. Sustain. Energy Rev. 153 (2022), 111754. https://doi.org/10.1016/j.rser.2021.111754
  18. M.B. Jebli, S. Farhani, K. Guesmi, Renewable energy, CO2 emissions and value added: empirical evidence from countries with different income levels, Struct. Change Econ. Dynam. 53 (2020) 402-410. https://doi.org/10.1016/j.strueco.2019.12.009
  19. A.M. Halliru, N. Loganathan, N. Sethi, A.A.G. Hassan, FDI inflows, energy consumption and sustainable economic growth for ECOWAS countries: the pollution haven hypothesis approach, Int. J. Green Econ. 14 (2020) 327-348. https://doi.org/10.1504/IJGE.2020.112576
  20. X. Ji, Y. Zhang, N. Mirza, M. Umar, S.K.A. Rizvi, The impact of carbon neutrality on the investment performance: evidence from the equity mutual funds in BRICS, J. Environ. Manag. 297 (2021) 113228. https://doi.org/10.1016/j.jenvman.2021.113228
  21. M. Umar, X. Ji, N. Mirza, B. Naqvi, Carbon neutrality, bank lending, and credit risk: evidence from the Eurozone, J. Environ. Manag. 296 (2021) 113156. https://doi.org/10.1016/j.jenvman.2021.113156
  22. M. Sahoo, N. Sethi, The intermittent effects of renewable energy on ecological footprint: evidence from developing countries, Environ. Sci. Pollut. Res. Int. 28 (2021) 56401-56417. https://doi.org/10.1007/s11356-021-14600-3
  23. J.P. Romero, C. Gramkow, Economic complexity and greenhouse gas emissions, World Dev. 139 (2021), 105317. https://doi.org/10.1016/j.worlddev.2020.105317
  24. P. Tobin, N.M. Schmidt, J. Tosun, C. Burns, Mapping states' Paris climate pledges: analysing targets and groups at COP 21, Global Environ. Change 48 (2018) 11-21. https://doi.org/10.1016/j.gloenvcha.2017.11.002
  25. M. Ramzan, S.A. Raza, M. Usman, G.D. Sharma, H.A. Iqbal, Environmental cost of non-renewable energy and economic progress: do ICT and financial development mitigate some burden? J. Clean. Prod. 333 (2022), 130066. https://doi.org/10.1016/j.jclepro.2021.130066
  26. A. Bibi, X. Zhang, M. Umar, The imperativeness of biomass energy consumption to the environmental sustainability of the United States revisited, Environ. Ecol. Stat. 28 (2021) 821-841. https://doi.org/10.1007/s10651-021-00500-9
  27. S. Pilpola, V. Arabzadeh, J. Mikkola, P.D. Lund, Analyzing national and local pathways to carbon-neutrality from technology, emissions, and resilience perspectivesdcase of Finland, Energies 12 (2019) 949. https://doi.org/10.3390/en12050949
  28. M. Ahmad, Z. Ahmed, A. Majeed, B. Huang, An environmental impact assessment of economic complexity and energy consumption: does institutional quality make a difference? Environ. Impact Assess. Rev. 89 (2021), 106603. https://doi.org/10.1016/j.eiar.2021.106603
  29. D. Balsalobre-Lorente, L. Ibanez-Luzon, M. Usman, M. Shahbaz, The environmental Kuznets curve, based on the economic complexity, and the pollution haven hypothesis in PIIGS countries, Renew. Energy 185 (2022) 1441-1455. https://doi.org/10.1016/j.renene.2021.10.059
  30. J. Li, X. Dong, K. Dong, Is China's Green Growth Possible? the Roles of Green Trade and Green Energy, Economic Research-Ekonomska Istrazivanja, 2022, pp. 1-25.
  31. K. Dong, Y. Han, Y. Dou, M. Shahbaz, Moving toward Carbon Neutrality: Assessing Natural Gas Import Security and its Impact on CO2 Emissions, Sustainable Development, 2021.
  32. J. Wang, X. Dong, K. Dong, How Digital Industries Affect China's Carbon Emissions? Analysis of the Direct and Indirect Structural Effects, Technology in Society, 2022, 101911.
  33. C. Zhao, K. Wang, X. Dong, K. Dong, Is smart transportation associated with reduced carbon emissions? The case of China, Energy Econ. 105 (2022), 105715. https://doi.org/10.1016/j.eneco.2021.105715
  34. M. Can, G. Gozgor, The impact of economic complexity on carbon emissions: evidence from France, Environ. Sci. Pollut. Res. Int. 24 (2017) 16364-16370. https://doi.org/10.1007/s11356-017-9219-7
  35. J. Chen, Q. Shi, W. Zhang, Structural path and sensitivity analysis of the CO2 emissions in the construction industry, Environ. Impact Assess. Rev. 92 (2022), 106679. https://doi.org/10.1016/j.eiar.2021.106679
  36. D.P. Dash, A.K. Dash, N. Sethi, Designing hydro-energy led economic growth for pollution abatement: evidence from BRICS, Environ. Sci. Pollut. Res. Int. (2022) 1-18.
  37. M. Sahoo, N. Sethi, Impact of industrialization, urbanization, and financial development on energy consumption: empirical evidence from India, J. Publ. Aff. 20 (2020), e2089. https://doi.org/10.1002/pa.2089
  38. D. Gielen, J. Newman, M.K. Patel, Reducing industrial energy use and CO2 emissions: the role of materials science, MRS Bull. 33 (2011) 471-477.
  39. G. Grossman, Pollution and growth: what do we know? in: I. Goldin, L.A. Winters (Eds.), The Economics of Sustainable Development" Cambridge University Press, 1995.
  40. Y. Zhou, D. Liang, X. Xing, Environmental efficiency of industrial sectors in China: an improved weighted SBM model, Math. Comput. Model. 58 (2013) 990-999. https://doi.org/10.1016/j.mcm.2012.09.021
  41. J. Wu, Q. Zhu, J. Chu, L. Liang, Two-stage network structures with undesirable intermediate outputs reused: a DEA based approach, Comput. Econ. 46 (2015) 455-477. https://doi.org/10.1007/s10614-015-9498-3
  42. G.M. Grossman, A.B. Krueger, Environmental Impacts of a North American Free Trade Agreement, National Bureau of economic research Cambridge, Mass., USA, 1991.
  43. W. Yang, W. Wang, S. Ouyang, The influencing factors and spatial spillover effects of CO2 emissions from transportation in China, Sci. Total Environ. 696 (2019) 133900. https://doi.org/10.1016/j.scitotenv.2019.133900
  44. F. Huang, D. Zhou, J.-L. Hu, Q. Wang, Integrated airline productivity performance evaluation with CO2 emissions and flight delays, J. Air Transport. Manag. 84 (2020), 101770. https://doi.org/10.1016/j.jairtraman.2020.101770
  45. P. Wanke, Z. Chen, X. Zheng, J. Antunes, Sustainability efficiency and carbon inequality of the Chinese transportation system: a robust bayesian stochastic frontier analysis, J. Environ. Manag. 260 (2020) 110163. https://doi.org/10.1016/j.jenvman.2020.110163
  46. N. Dallenbach, Low-carbon travel mode choices: the role of time perceptions and familiarity, Transport. Res. Transport Environ. 86 (2020), 102378. https://doi.org/10.1016/j.trd.2020.102378
  47. S. Mohanty, N. Sethi, The energy consumption-environmental quality nexus in BRICS countries: the role of outward foreign direct investment, Environ. Sci. Pollut. Res. Int. 29 (2022) 19714-19730. https://doi.org/10.1007/s11356-021-17180-4
  48. P. Bhujabal, N. Sethi, P.C. Padhan, ICT, foreign direct investment and environmental pollution in major Asia Pacific countries, Environ. Sci. Pollut. Res. Int. 28 (2021) 42649-42669. https://doi.org/10.1007/s11356-021-13619-w
  49. D.I. Godil, A. Sharif, H. Agha, K. Jermsittiparsert, The dynamic nonlinear influence of ICT, financial development, and institutional quality on CO2 emission in Pakistan: new insights from QARDL approach, Environ. Sci. Pollut. Res. Int. 27 (2020) 24190-24200. https://doi.org/10.1007/s11356-020-08619-1
  50. D. Balsalobre-Lorente, O.M. Driha, N.C. Leitao, M. Murshed, The carbon dioxide neutralizing effect of energy innovation on international tourism in EU-5 countries under the prism of the EKC hypothesis, J. Environ. Manag. 298 (2021) 113513. https://doi.org/10.1016/j.jenvman.2021.113513
  51. S. Danish, Ud-Din Khan, A. Ahmad, Testing the pollution haven hypothesis on the pathway of sustainable development: accounting the role of nuclear energy consumption, Nucl. Eng. Technol. 53 (2021) 2746-2752. https://doi.org/10.1016/j.net.2021.02.008
  52. H. Hou, X. Feng, Y. Zhang, H. Bai, Y. Ji, H. Xu, Energy-related carbon emissions mitigation potential for the construction sector in China, Environ. Impact Assess. Rev. 89 (2021), 106599. https://doi.org/10.1016/j.eiar.2021.106599
  53. J. Baek, Do nuclear and renewable energy improve the environment? Empirical evidence from the United States, Ecol. Indicat. 66 (2016) 352-356. https://doi.org/10.1016/j.ecolind.2016.01.059
  54. K. Saidi, M. Ben Mbarek, Nuclear energy, renewable energy, CO 2 emissions, and economic growth for nine developed countries: evidence from panel Granger causality tests, Prog. Nucl. Energy 88 (2016) 364-374. https://doi.org/10.1016/j.pnucene.2016.01.018
  55. S.T. Hassan, M.A. Baloch, Z.H. Tarar, Is nuclear energy a better alternative for mitigating CO2 emissions in BRICS countries? An empirical analysis, Nucl. Eng. Technol. 52 (2020) 2969-2974. https://doi.org/10.1016/j.net.2020.05.016
  56. S.A. Sarkodie, S. Adams, Renewable energy, nuclear energy, and environmental pollution: accounting for political institutional quality in South Africa, Sci. Total Environ. 643 (2018) 1590-1601. https://doi.org/10.1016/j.scitotenv.2018.06.320
  57. J. Baek, D. Pride, On the income-enuclear energy-CO2 emissions nexus revisited, Energy Econ. 43 (2014) 6-10. https://doi.org/10.1016/j.eneco.2014.01.015
  58. H. Ishida, Can Nuclear Energy Contribute to the Transition toward a LowCarbon Economy? $ the Japanese Case, 2018.
  59. K. Dong, R. Sun, H. Jiang, X. Zeng, CO2 emissions, economic growth, and the environmental Kuznets curve in China: what roles can nuclear energy and renewable energy play? J. Clean. Prod. 196 (2018) 51-63. https://doi.org/10.1016/j.jclepro.2018.05.271
  60. A.C. Marques, J.A. Fuinhas, A.R. Nunes, Electricity generation mix and economic growth: what role is being played by nuclear sources and carbon dioxide emissions in France? Energy Pol. 92 (2016) 7-19. https://doi.org/10.1016/j.enpol.2016.01.027
  61. H. Iwata, K. Okada, S. Samreth, Empirical study on the determinants of CO2 emissions: evidence from OECD countries, Appl. Econ. 44 (2012) 3513-3519. https://doi.org/10.1080/00036846.2011.577023
  62. H. Xie, Y. Yu, W. Wang, Y. Liu, The substitutability of non-fossil energy, potential carbon emission reduction and energy shadow prices in China, Energy Pol. 107 (2017) 63-71. https://doi.org/10.1016/j.enpol.2017.04.037
  63. R. Danish, Ulucak, Renewable energy, technological innovation and the environment: a novel dynamic auto-regressive distributive lag simulation, Renew. Sustain. Energy Rev. 150 (2021), 111433. https://doi.org/10.1016/j.rser.2021.111433
  64. S. Jordan, A.Q. Philips, Cointegration testing and dynamic simulations of autoregressive distributed lag models, STATA J.: Prom. Commun. Stat. 18 (2018) 902-923. https://doi.org/10.1177/1536867X1801800409
  65. S. Kripfganz, D.C. Schneider, Response surface regressions for critical value bounds and approximate p-values in equilibrium correction models 1, Oxf. Bull. Econ. Stat. 82 (2020) 1456-1481. https://doi.org/10.1111/obes.12377
  66. R. Costanza, R. Ayres, L. Deutsch, A. Jansson, M. Troell, P. Ronnback, C. Folke, N. Kautsky, R. Herendeen, I. Moffat, Commentary forum: the ecological footprint, Ecol. Econ. 32 (2000) 341e394.
  67. M. Borucke, D. Moore, G. Cranston, K. Gracey, K. Iha, J. Larson, E. Lazarus, J.C. Morales, M. Wackernagel, A. Galli, Accounting for demand and supply of the biosphere's regenerative capacity: the National Footprint Accounts' underlying methodology and framework, Ecol. Indicat. 24 (2013) 518-533. https://doi.org/10.1016/j.ecolind.2012.08.005
  68. M. Ikram, W. Xia, Z. Fareed, U. Shahzad, M.Z. Rafique, Exploring the nexus between economic complexity, economic growth and ecological footprint: contextual evidences from Japan, Sustain. Energy Technol. Assessments 47 (2021), 101460. https://doi.org/10.1016/j.seta.2021.101460
  69. Y. Geng, L. Zhang, X. Chen, B. Xue, T. Fujita, H. Dong, Urban ecological footprint analysis: a comparative study between Shenyang in China and Kawasaki in Japan, J. Clean. Prod. 75 (2014) 130-142. https://doi.org/10.1016/j.jclepro.2014.03.082
  70. R.K. Kaufmann, B. Davidsdottir, S. Garnham, P. Pauly, The determinants of atmospheric SO2 concentrations: reconsidering the environmental Kuznets curve, Ecol. Econ. 25 (1998) 209-220. https://doi.org/10.1016/S0921-8009(97)00181-X
  71. O.A. Aluko, A.A. Obalade, Financial development and environmental quality in sub-Saharan Africa: is there a technology effect? Sci. Total Environ. 747 (2020), 141515. https://doi.org/10.1016/j.scitotenv.2020.141515
  72. K. Munir, A. Ameer, Nonlinear effect of FDI, economic growth, and industrialization on environmental quality: evidence from Pakistan, Manag. Environ. Qual. Int. J. 31 (1) (2020) 223-234. https://doi.org/10.1108/MEQ-10-2018-0186
  73. H. Dong, M. Xue, Y. Xiao, Y. Liu, Do carbon emissions impact the health of residents? Considering China's industrialization and urbanization, Sci. Total Environ. 758 (2021), 143688. https://doi.org/10.1016/j.scitotenv.2020.143688
  74. S.T. Hassan, B. Zhu, C.-C. Lee, P. Ahmad, M. Sadiq, Asymmetric impacts of public service "transportation" on the environmental pollution in China, Environ. Impact Assess. Rev. 91 (2021), 106660. https://doi.org/10.1016/j.eiar.2021.106660
  75. B. Dogan, O.M. Driha, D. Balsalobre Lorente, U. Shahzad, The mitigating effects of economic complexity and renewable energy on carbon emissions in developed countries, Sustain. Dev. 29 (2021) 1-12. https://doi.org/10.1002/sd.2125
  76. K. Du, P. Li, Z. Yan, Do green technology innovations contribute to carbon dioxide emission reduction? Empirical evidence from patent data, Technol. Forecast. Soc. Change 146 (2019) 297-303. https://doi.org/10.1016/j.techfore.2019.06.010
  77. S.T. Hassan, Danish, S.U.-D. Khan, E. Xia, H. Fatima, Role of institutions in correcting environmental pollution: an empirical investigation, Sustain. Cities Soc. 53 (2020), 101901. https://doi.org/10.1016/j.scs.2019.101901
  78. P.K. Narayan, S. Narayan, Carbon dioxide emissions and economic growth: panel data evidence from developing countries, Energy Pol. 38 (2010) 661-666. https://doi.org/10.1016/j.enpol.2009.09.005
  79. M.H. Pesaran, Y. Shin, R.J. Smith, Bounds testing approaches to the analysis of level relationships, J. Appl. Econom. 16 (2001) 289e326.
  80. H. Liu, H. Kim, Ecological footprint, foreign direct investment, and gross domestic production: evidence of belt & road initiative countries, Sustainability 10 (2018) 3527. https://doi.org/10.3390/su10103527
  81. Z. Li, B. Lin, Analyzing the impact of environmental regulation on labor demand: a quasi-experiment from Clean Air Action in China, Environ. Impact Assess. Rev. 93 (2022), 106721. https://doi.org/10.1016/j.eiar.2021.106721
  82. S.A. Solarin, M.O. Bello, Energy innovations and environmental sustainability in the U.S.: the roles of immigration and economic expansion using a maximum likelihood method, Sci. Total Environ. 712 (2020) 135594. https://doi.org/10.1016/j.scitotenv.2019.135594
  83. M. Zhao, T. Sun, Q. Feng, Capital allocation efficiency, technological innovation and vehicle carbon emissions: evidence from a panel threshold model of Chinese new energy vehicles enterprises, Sci. Total Environ. 784 (2021) 147104. https://doi.org/10.1016/j.scitotenv.2021.147104
  84. F.F. Adedoyin, I. Ozturk, F.V. Bekun, P.O. Agboola, M.O. Agboola, Renewable and non-renewable energy policy simulations for abating emissions in a complex economy: evidence from the novel dynamic ARDL, Renew. Energy 177 (2021) 1408-1420. https://doi.org/10.1016/j.renene.2021.06.018