DOI QR코드

DOI QR Code

Solidification of uranium mill tailings by MBS-MICP and environmental implications

  • Niu, Qianjin (School of Resource Environment and Safety Engineering, University of South China) ;
  • Li, Chunguang (School of Resource Environment and Safety Engineering, University of South China) ;
  • Liu, Zhenzhong (School of Resource Environment and Safety Engineering, University of South China) ;
  • Li, Yongmei (School of Resource Environment and Safety Engineering, University of South China) ;
  • Meng, Shuo (R&D Center of Radioactive Waste Treatment, Disposal and Modeling, University of South China) ;
  • He, Xinqi (School of Resource Environment and Safety Engineering, University of South China) ;
  • Liu, Xinfeng (School of Resource Environment and Safety Engineering, University of South China) ;
  • Wang, Wenji (School of Nuclear Science and Technology, University of South China) ;
  • He, Meijiao (School of Resource Environment and Safety Engineering, University of South China) ;
  • Yang, Xiaolei (School of Resource Environment and Safety Engineering, University of South China) ;
  • Liu, Qi (School of Resource Environment and Safety Engineering, University of South China) ;
  • Liu, Longcheng (China Institute of Atomic Energy)
  • 투고 : 2022.02.26
  • 심사 : 2022.04.25
  • 발행 : 2022.10.25

초록

Uranium mill tailing ponds (UMTPs) are risk source of debris flow and a critical source of environmental U and Rn pollution. The technology of microbial induced calcium carbonate precipitation (MICP) has been extensively studied on reinforcement of UMTs, while little attention has been paid to the effects of MICP on U & Rn release, especially when incorporation of metakaolin and bacillus subtilis (MBS). In this study, the reinforcement and U & Rn immobilization role of MBS -MICP solidification in different grouting cycle for uranium mill tailings (UMTs) was comprehensively investigated. The results showed that under the action of about 166.7 g/L metakaolin and ~50% bacillus subtilis, the solidification cycle of MICP was shortened by 50%, the solidified bodies became brittle, and the axial stress increased by up to 7.9%, and U immobilization rates and Rn exhalation rates decrease by 12.6% and 0.8%, respectively. Therefore, the incorporation of MBS can enhance the triaxial compressive strength and improve the immobilization capacity of U and Rn of the UMTs bodies solidified during MICP, due to the reduction of pore volume and surface area, the formation of more crystals general gypsum and gismondine, as well as the enhancing of coprecipitation and encapsulation capacity.

키워드

과제정보

This work was supported by the Natural Science Foundation of Hunan Province, China (2019JJ50496), the Research Foundation of Education Bureau of Hunan Province, China (20B494), and the National Natural Science Foundation of China (U1703123).

참고문헌

  1. J.A. Galhardi, R. Garcia-Tenorio, D.M. Bonotto, I. Diaz Frances, J.G. Motta, Natural radionuclides in plants, soils and sediments afected by U-rich coal mining activities in Brazil, J. Environ. Radioact. 177 (2017) 37-47, https://doi.org/10.1016/j.jenvrad.2017.06.001.
  2. S. Yang, X. Zhang, X. Wu, M. Li, L. Zhang, Y. Peng, Q. Huang, W. Tan, Understanding the solid phase chemical fractionation of uranium in soil profile near a hydrometallurgical factory, Chemosphere 236 (2019), 124392, 1-124392.10.
  3. M. Yin, J. Sun, H. He, J. Liu, Q. Zhong, Q. Zeng, X. Huang, J. Wang, Y. Wu, D. Chen, Uranium re-adsorption on uranium mill tailings and environmental implications, J. Hazard Mater. 416 (2021), 126153, https://doi.org/10.1016/j.jhazmat.2021.126153.
  4. M. Yin, Y. Zhou, D. Tsang, J. Beiyuan, L. Song, J. She, J. Wang, L. Zhu, F. Fang, L. Wang, J. Liu, Y. Liu, G. Song, D. Chen, T. Xiao, Emergent thallium exposure from uranium mill tailings, J. Hazard Mater. 407 (2021), 124402. https://doi.org/10.1016/j.jhazmat.2020.124402
  5. G. Chen, Q.Y. Li, D.Q. Li, Z.Y. Wu, Y. Liu, Main frequency band of blast vibration signal based on wavelet packet transform, Appl. Math. Model. (2019) 30288-30294, https://doi.org/10.1016/j.apm.2019.05.005. S0303904X(19).
  6. Q.Y. Li, G. Chen, D.Y. Luo, H.P. Ma, Y. Liu, An experimental study of a novel liquid carbon dioxide rock-breaking technology, Int. J. Rock Mech. Min. Sci. 128 (2020), 104244, https://doi.org/10.1016/j.ijrmms.2020.104244.
  7. C.Y. Tang, J. Zhong, Y. Lv, D.Z. Ma, M.J. Zhang, J.L. Wang, X.Y. Liu, The microbial community composition and population change during bioremediation of uranium tailings, IOP Conf. Ser. Earth Environ. Sci. 621 (1) (2021), https://doi.org/10.1088/1755-1315/621/1/012096.
  8. L. Kong, H. Zhang, K. Shih, M. Su, Z. Diao, J. Long, L. Hou, G. Song, D. Chen, Synthesis of FC-supported Fe through a carbothermal process for immobilizing uranium, J. Hazard Mater. 357 (2018) 168-174. https://doi.org/10.1016/j.jhazmat.2018.05.067
  9. R. Gui, Y.X. Pan, D.X. Ding, Y. Liu, Z.J. Zhang, Experimental study on the finegrained uranium tailings reinforced by MICP, Adv. Civ. Eng. (2018) 1-10, https://doi.org/10.1155/2018/2928985.
  10. Y. Sun, D. Wang, D.C.W. Tsang, L. Wang, Y.S. Ok, Y. Feng, A critical review of risks, characteristics, and treatment strategies for potentially toxic elements in wastewater from shale gas extraction, Environ. Int. 125 (2019) 452-469. https://doi.org/10.1016/j.envint.2019.02.019
  11. F. Wang, X. Wang, J. Wang, X. Zhang, Structure of metakaolin composite reinforcement material and performance research, J. Lanzhou Univ.: Nat. Sci. 56 (3) (2020), https://doi.org/10.13885/j.issn.0455-2059.2020.03.008, 2020.
  12. J. Wang, F. Fang, Y. Zhou, M. Yin, J. Liu, J. Wang, Y. Wu, J. Beiyuan, D. Chen, Facile modification of graphene oxide and its application for the aqueous uranyl ion sequestration: insights on the mechanism, Chemosphere 258 (2020), 127152. https://doi.org/10.1016/j.chemosphere.2020.127152
  13. R.R.O. Abdel, A.A. Zaki, Comparative analysis of nuclear waste solidifcation performance models: spent ion exchangercement based wasteforms, Process Saf. Environ. Protect. 136 (2020) 115-125, https://doi.org/10.1016/j.psep.2019.12.038.
  14. M. Isaacs, S. Lange, G. Deissmann, D. Bosbach, A.E. Milodowski, D. Read, Retention of technetium-99 by grout and backfll cements: implications for the safe disposal of radioactive waste, Appl. Geochem. 116 (2020), https://doi.org/10.1016/j.apgeochem.2020.104580.
  15. W. Xu, G.Y. Zhuang, Z.X. Chen, J.T. Wei, Experimental study on the micromorphology and strength formation mechanism of epoxy asphalt during the curing reaction, Appl. Sci. 10 (7) (2020), https://doi.org/10.3390/app10072610.
  16. H.W. Kang, K.R. Lee, J.H. Choi, H.S. Park, Aerosol processing of glass for radioactive salt waste immobilization, Ann. Nucl. Energy 151 (2021), https://doi.org/10.1016/j.anucene.2020.107951.
  17. K. Sawada, Y. Enokida, T. Tsukada, Oxidation and vitrifcation of aluminum with lead borate glass for low level radioactive waste treatment, J. Nucl. Sci. Technol. 57 (6) (2020) 671-677, https://doi.org/10.1080/00223131.2019.1710615.
  18. R. Wufuer, Y. Wei, Q. Lin, H. Wang, W. Song, W. Liu, D. Zhang, X. Pan, G.M. Gadd, Chapter four - uranium bioreduction and biomineralization, Adv. Appl. Microbiol. 101 (2017) 137e168, https://doi.org/10.1016/bs.aambs.2017.01.003.
  19. Z.J. Zhang, K.W. Tong, L. Hu, Q. Yu, L.L. Wu, Experimental study on solidification of tailings by MICP under the regulation of organic matrix, Construct. Build. Mater. 265 (2020), 120303, 2020. https://doi.org/10.1016/j.conbuildmat.2020.120303
  20. S. Petlitckaia, Y. Barre, T. Piallat, O. Grauby, D. Ferry, A. Poulesquen, Functionalized geopolymer foams for cesium removal from liquid nuclear waste, J. Clean. Prod. 269 (2020), https://doi.org/10.1016/j.jclepro.2020.122400.
  21. V. Cuccia, C.B. Freire, A.C.Q. Ladeira, Radwaste oil immobilization in geopolymer after non-destructive treatment, Prog. Nucl. Energy 122 (2020), https://doi.org/10.1016/j.pnucene.2020.103246.
  22. Q.Z. Tian, K. Sasaki, Structural characterizations of fly ash-based geopolymer after adsorption of various metal ions, Environ. Technol. 42 (6) (2021) 941-951, https://doi.org/10.1080/09593330.2019.1649469.
  23. M.T. Zhang, C.H. Yang, M. Zhao, K. Yang, R. Shen, Y.J. Zheng, Immobilization potential of Cr(VI) in sodium hydroxide activated slag pastes, J. Hazard Mater. 321 (2017) 281-289, https://doi.org/10.1016/j.jhazmat.2016.09.019.
  24. B. Guo, D.A. Pan, Bo Liu, A.A. Volinsky, M. Fincan, J.F. Du, S.G. Zhang, Immobilization mechanism of Pb in fly ash-based geopolymer, Construct. Build. Mater. 134 (2017) 123-130, https://doi.org/10.1016/j.conbuildmat.2016.12.139.
  25. Q.Z. Tian, B.L. Guo, K. Sasaki, Immobilization mechanism of Se oxyanions in geopolymer: efects of alkaline activators and calcined hydrotalcite additive, J. Hazard Mater. 387 (2020), https://doi.org/10.1016/j.jhazmat.2019.121994.
  26. F. Jiang, B. Tan, Z. Wang, Y. Liu, Y. Hao, C. Zhang, H. Wu, C. Hong, Preparation and related properties of geopolymer solidified uranium tailings bodies with various fibers and fiber content, Environ. Sci. Pollut. Res. (2021), https://doi.org/10.1007/s11356-021-17176-0.
  27. V.S. Whiffin, L.A. van Paassen, M.P. Harkes, Microbial carbonate precipitation as a soil improvement technique, Geomicrobiol. J. 24 (5) (2007) 417-423, https://doi.org/10.1080/01490450701436505.
  28. J.T. Dejong, B.M. Mortensen, B.C. Martinez, Biomediated soil improvement, Ecol. Eng. 36 (2) (2010) 197-210, https://doi.org/10.1016/j.ecoleng.2008.12.029.
  29. J. Xu, A. Kang, Z. Wu, P. Xiao, Y. Gong, Effect of high-calcium basalt fiber on the workability, mechanical properties and microstructure of slag-fly ash geopolymer grouting material, Construct. Build. Mater. 302 (2021), 124089. https://doi.org/10.1016/j.conbuildmat.2021.124089
  30. D. Walsh, S. Mann, Fabrication of hollow porous shells of calcium carbonate from self-organizing media, Nature 377 (1995) 320-323, https://doi.org/10.1038/377320 a0.
  31. J. Zhao, Y.J. Li, G.X. Cheng, Synthesis of calcium carbonate crystals by hydroxypropyl methylcellulose gel template, Chin. Sci. Bull. 52 (4) (2007) 394-398, https://doi.org/10.3321/j.issn:0023-074X.2007.04.005 (in Chinese).
  32. N. Koga, Y. Yamane, Thermal behaviors of amorphous calcium carbonates prepared in aqueous and ethanol media, J. Therm. Anal. Calorim. 94 (2) (2008) 379-387, https://doi.org/10.1007/s10973-008-9110-3.
  33. B.P. Bastakoti, S. Guragain, Y. Yokoyama, S. Yasa, K. Nakashima, Synthesis of hollow CaCO3 nanospheres templated by micelles of poly (styrene -b-acrylic acid-b-ethylene glycol) in aqueous solutions, Langmuir ACS J. Surf. Colloids. 27 (1) (2011) 379-384, https://doi.org/10.1021/la103660x.
  34. A.S. Ghatak, M. Koch, C. Guth, I.M. Weiss, Peptide induced crystallization of calcium carbonate on wrinkle patterned substrate: implications for chitin formation in molluscs, Int. J. Mol. Sci. 14 (6) (2013) 11842-11860, https://doi.org/10.3390/ijms140611842.
  35. L.B. Mao, H.L. Gao, H.B. Yao, L. Liu, H. Colfen, G. Liu, S.M. Chen, S.K. Li, Y.X. Yan, Y.Y. Liu, S.H. Yu, Synthetic nacre by predesigned matrixdirected mineralization, Science 354 (6308) (2016) 107, https://doi.org/10.1126/science.aaf8991.
  36. W. Khaliq, M.B. Ehsan, Crack healing in concrete using various bio influenced self-healing techniques, Construct. Build. Mater. 102 (1) (2016) 349-357, https://doi.org/10.1016/j.conbuildmat.2015.11.006.
  37. G. Ma, X. He, H. Lu, H. Wu, H. Liu, J. Chu, Y. Xiao, Strength of biocemented coarse sand with kaolin micro-particle improved nucleation, Chin. J. Geotech. Eng. 43 (2) (2021) 290-299.
  38. B. Chen, J. Wang, L. Kong, X. Mai, N. Zheng, Q. Zhong, J. Liang, D. Chen, Adsorption of uranium from uranium mine contaminated water using Phosphate Rock Apatite (PRA): isotherm, kinetic and characterization studies, Colloids Surf. A Physicochem. Eng. Asp. 520 (2) (2017) 612-621. https://doi.org/10.1016/j.colsurfa.2017.01.055
  39. X.L. Wang, Experimental study on mechanical properties and leaching resistance of uranium tailings cement solidifed body, Univ. South China (2019), https://doi.org/10.27234/d.cnki.gnhuu.2019.000378.
  40. F.L. Jiang, G. Chen, M. Li, Y. Liu, X.Y. Li, J.T. Guo, H.N. Wu, Z. Wang, Experimental study of diferent admixture efects on the properties of uranium mill tailing solidifed bodies, J. Radioanal. Nucl. Chem. 322 (2) (2019) 1159-1168, https://doi.org/10.1007/s10967-019-06825-x.
  41. M.S. Rao, V.S. Reddy, M. Hafsa, P. Veena, P. Anusha, Bioengineered concrete-a sustainable self-healing construction material, Res. J. Eng. Sci. 2278 (2013) 9472.
  42. S. Rout, P.M. Ravi, A. Kumar, R.M. Tripathi, Study on speciation and salinityinduced mobility of uranium from soil, Environ. Earth Sci. 74 (3) (2015) 2273-2281. https://doi.org/10.1007/s12665-015-4218-9
  43. S.Y. Feng, H.Q. Wang, Y. Cui, Y.J. Ye, X.Y. Li, D. Xie, Z.Z. He, R. Yang, Monte Carlo method for determining radon difusion coeffcients in porous media, Radiat. Meas. 126 (2019), https://doi.org/10.1016/j.radmeas.2019.106130.
  44. M. Yin, J. Sun, J. Wang, N. Belshaw, J. Liu, W. Linghu, Mechanism of uranium release from uranium mill tailings under long-term exposure to simulated acid rain: geochemical evidence and environmental implication, Environ. Pollut. 244 (2019) 174-181. https://doi.org/10.1016/j.envpol.2018.10.018
  45. K.S.W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Provisional), Pure Appl. Chem. 54 (11) (2013), https://doi.org/10.1351/pac198254112201.