DOI QR코드

DOI QR Code

Two-dimensional measurements of the ELM filament using a multi-channel electrical probe array with high time resolution at the far SOL region in the KSTAR

  • Hong, Young-Hun (Department of Electrical Engineering, Hanyang University) ;
  • Kim, Kwan-Yong (Department of Electrical Engineering, Hanyang University) ;
  • Kim, Ju-Ho (Department of Electrical Engineering, Hanyang University) ;
  • Son, Soo-Hyun (Korea Institute of Fusion Energy (KFE)) ;
  • Lee, Hyung-Ho (Korea Institute of Fusion Energy (KFE)) ;
  • Eo, Hyun-Dong (Department of Electrical Engineering, Hanyang University) ;
  • Kim, Min-Seok (Department of Electrical Engineering, Hanyang University) ;
  • Hong, Suk-Ho (Korea Institute of Fusion Energy (KFE)) ;
  • Chung, Chin-Wook (Department of Electrical Engineering, Hanyang University)
  • Received : 2021.10.29
  • Accepted : 2022.05.02
  • Published : 2022.10.25

Abstract

For the first time, two-dimensional temporal behavior of the edge localized mode (ELM) filament is measured in the edge tokamak plasma with a multi-channel electrical probe array (MCEP). MCEP, which has 16 floating probes (4 × 4), is mounted at the far scrape-off layer (SOL) region in the KSTAR. An electron temperature and an ion flux are measured by sideband method (SBM), which can achieve two-dimensional measurements with high time resolution. Furthermore, temporal evolutions of the electron temperature and the ion flux are obtained during the ELM occurrence. In the H-mode period, short spikes from ELM bursts are observed in measured plasma parameters, and the trend is similar to that of typical Hα signal. Interestingly, when blob-like ELM filaments crash the probe, the heat flux is significantly higher in a local region of the probe array. The results show that our probe array using the SBM can measure the ELM behavior and the plasma parameters without the effect of the stray current caused by the huge device. This study can provide valuable data needed to understand the interaction between the SOL plasma and the plasma facing components (PFCs).

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF-2019M1A7A1A03087579, NRF-2021R1I1A 1A01050312), the Ministry of Trade, Industry and Energy (20011226, 20009415, 20010412, 20012609).

References

  1. K. Toi, F. Watanabe, S. Ohdachi, S. Morita, X. Gao, K. Narihara, S. Sakakibara, K. Tanaka, T. Tokuzawa, H. Urano, LH transition and edge transport barrier formation on LHD, Fusion Sci. Technol. 58 (2010) 61-69, https://doi.org/10.13182/FST10-A10794.
  2. F. Wagner, G. Becker, K. Behringer, D. Campbell, A. Eberhagen, W. Engelhardt, G. Fussmann, O. Gehre, J. Gernhardt, G.v. Gierke, Regime of improved confinement and high beta in neutral-beam-heated divertor discharges of the ASDEX tokamak, Phys. Rev. Lett. 49 (1982) 1408, https://doi.org/10.1103/PhysRevLett.49.1408.
  3. F. Wagner, A quarter-century of H-mode studies, Plasma Phys. Contr. Fusion 49 (2007) B1, https://doi.org/10.1088/0741-3335/49/12B/S01.
  4. H. Zohm, Edge localized modes (ELMs), Plasma Phys. Contr. Fusion 38 (1996) 105, https://doi.org/10.1088/0741-3335/38/2/001.
  5. J. Connor, A review of models for ELMs, Plasma Phys. Contr. Fusion 40 (1998) 191, https://doi.org/10.1088/0741-3335/40/2/003.
  6. L. Vinet, A. Zhedanov, A 'missing'family of classical orthogonal polynomials, J. Phys. Math. Theor. 44 (2011), 085201, https://doi.org/10.1088/1751-8113/44/8/085201.
  7. M. Keilhacker, G. Becker, K. Bernhardi, A. Eberhagen, M. Elshaer, O. Gehre, J. Gernhardt, E. Glock, G. Haas, F. Karger, S. Kissel, O. Kluber, M. Kornherr, K. Lackner, G. Lisitano, G.G. Lister, J. Massig, H.M. Mayer, K. Mccormick, D. Meisel, E. Meservey, E.R. Muller, H. Murmann, H. Niedermeyer, W. Poschenrieder, H. Rapp, B. Richter, H. Rohr, F. Ryter, F. Schneider, G. Siller, P. Smeulders, F. Soldner, E. Speth, A. Stabler, K. Steinmetz, K.H. Steuer, Z. Szymanski, G. Venus, O. Vollmer, F. Wagner, G. Fussman, G. Vongierke, Confinement studies in L-type and H-type Asdex discharges, Plasma Phys. Contr. Fusion 26 (1984) 49-63, https://doi.org/10.1088/0741-3335/26/1A/305.
  8. J.R. Myra, D.A. D'Ippolito, D.P. Stotler, S.J. Zweben, B.P. LeBlanc, J.E. Menard, R.J. Maqueda, J. Boedo, Blob birth and transport in the tokamak edge plasma: analysis of imaging data, Phys. Plasmas 13 (2006), 092509, https://doi.org/10.1063/1.2355668.
  9. D.A. D'ippolito, J.R. Myra, S.J. Zweben, Convective transport by intermittent blob-filaments: comparison of theory and experiment, Phys. Plasmas 18 (2011), 060501, https://doi.org/10.1063/1.3594609.
  10. J.A. Alonso, P. Andrew, A. Neto, J.L. de Pablos, E. de la Cal, H. Fernandes, W. Fundamenski, C. Hidalgo, G. Kocsis, A. Murari, G. Petravich, R.A. Pitts, L. Rios, C. Silva, E.-J. Contributors, Fast visible imaging of ELM-wall interactions on JET, J. Nucl. Mater. 390e91 (2009) 797-800, https://doi.org/10.1016/j.jnucmat.2009.01.211.
  11. S.I. Krasheninnikov, On scrape off layer plasma transport, Phys. Lett. 283 (2001) 368-370, https://doi.org/10.1016/S0375-9601(01)00252-3.
  12. A.S. Kukushkin, H.D. Pacher, G. Federici, G. Janeschitz, A. Loarte, G.W. Pacher, Divertor issues on ITER and extrapolation to reactors, Fusion Eng. Des. 65 (2003) 355-366, https://doi.org/10.1016/S0920-3796(02)00380-0.
  13. D.N. Hill, A review of ELMs in divertor tokamaks, J. Nucl. Mater. 241 (1997) 182-198, https://doi.org/10.1016/S0022-3115(97)80039-6.
  14. A. Loarte, G. Saibene, R. Sartori, D. Campbell, M. Becoulet, L. Horton, T. Eich, A. Herrmann, G. Matthews, N. Asakura, A. Chankin, A. Leonard, G. Porter, G. Federici, G. Janeschitz, M. Shimada, M. Sugihara, Characteristics of type I ELM energy and particle losses in existing devices and their extrapolation to ITER, Plasma Phys. Contr. Fusion 45 (2003) 1549-1569, https://doi.org/10.1088/0741-3335/45/9/302.
  15. G. Federici, A. Loarte, G. Strohmayer, Assessment of erosion of the ITER divertor targets during type I ELMs, Plasma Phys. Contr. Fusion 45 (2003) 1523-1547, https://doi.org/10.1088/0741-3335/45/9/301.
  16. B.N. Bazylev, Y. Koza, I.S. Landman, J. Linke, S.E. Pestchanyi, H. Wuerz, Energy threshold of brittle destruction for carbon-based materials, Phys. Scripta T111 (2004) 213-217, https://doi.org/10.1238/Physica.Topical.111a00213.
  17. W. Fundamenski, R. Pitts, A model of ELM filament energy evolution due to parallel losses, Plasma Phys. Contr. Fusion 48 (2005) 109, https://doi.org/10.1088/0741-3335/48/1/008.
  18. H.W. Muller, J. Adamek, R. Cavazzana, G.D. Conway, C. Fuchs, J.P. Gunn, A. Herrmann, J. Horacek, C. Ionita, A. Kallenbach, M. Kocan, M. Maraschek, C. Maszl, F. Mehlmann, B. Nold, M. Peterka, V. Rohde, J. Schweinzer, R. Schrittwieser, N. Vianello, E. Wolfrum, M. Zuin, A.U. Team, Latest investigations on fluctuations, ELM filaments and turbulent transport in the SOL of ASDEX Upgrade, Nucl. Fusion 51 (2011), 073023, https://doi.org/10.1088/0029-5515/51/7/073023.
  19. D.L. Rudakov, J.A. Boedo, R.A. Moyer, P.C. Stangeby, J.G. Watkins, D.G. Whyte, L. Zeng, N.H. Brooks, R.P. Doerner, T.E. Evans, M.E. Fenstermacher, M. Groth, E.M. Hollmann, S.I. Krasheninnikov, C.J. Lasnier, A.W. Leonard, M.A. Mahdavi, G.R. McKee, A.G. McLean, A.Y. Pigarov, W.R. Wampler, G. Wang, W.P. West, C.P.C. Wong, Far SOL transport and main wall plasma interaction in DIII-D, Nucl. Fusion 45 (2005) 1589-1599, https://doi.org/10.1088/0029-5515/45/12/014.
  20. R.A. Pitts, P. Andrew, G. Arnoux, T. Eich, W. Fundamenski, A. Huber, C. Silva, D. Tskhakaya, J.E. Contributors, ELM transport in the JET scrape-off layer, Nucl. Fusion 47 (2007) 1437-1448, https://doi.org/10.1088/0029-5515/47/11/005.
  21. N. Oyama, Y. Sakamoto, A. Isayama, M. Takechi, P. Gohil, L.L. Lao, P.B. Snyder, T. Fujita, S. Ide, Y. Kamada, Y. Miura, T. Oikawa, T. Suzuki, H. Takenaga, K. Toi, J. Team, Energy loss for grassy ELMs and effects of plasma rotation on the ELM characteristics in JT-60U, Nucl. Fusion 45 (2005) 871-881, https://doi.org/10.1088/0029-5515/45/8/014.
  22. J.W. Ahn, H.S. Kim, Y.S. Park, L. Terzolo, W.H. Ko, J.K. Park, A.C. England, S.W. Yoon, Y.M. Jeon, S.A. Sabbagh, Y.S. Bae, J.G. Bak, S.H. Hahn, D.L. Hillis, J. Kim, W.C. Kim, J.G. Kwak, K.D. Lee, Y.S. Na, Y.U. Nam, Y.K. Oh, S.I. Park, Confinement and ELM characteristics of H-mode plasmas in KSTAR, Nucl. Fusion 52 (2012), 114001, https://doi.org/10.1088/0029-5515/52/11/114001.
  23. A. Degeling, Y. Martin, J. Lister, L. Villard, V. Dokouka, V. Lukash, R. Khayrutdinov, Magnetic triggering of ELMs in TCV, Plasma Phys. Contr. Fusion 45 (2003) 1637, https://doi.org/10.1088/0741-3335/45/9/306.
  24. N. Hayashi, T. Takizuka, N. Aiba, N. Oyama, T. Ozeki, S. Wiesen, V. Parail, Integrated simulation of ELM energy loss and cycle in improved H-mode plasmas, Nucl. Fusion 49 (2009), 095015, https://doi.org/10.1088/0029-5515/49/9/095015.
  25. A. Kojima, N. Oyama, Y. Sakamoto, Y. Kamada, H. Urano, K. Kamiya, T. Fujita, H. Kubo, N. Aiba, Fast dynamics of type I and grassy ELMs in JT-60U, Nucl. Fusion 49 (2009), 115008, https://doi.org/10.1088/0029-5515/49/11/115008.
  26. M. Bornatici, R. Cano, O. Debarbieri, F. Engelmann, Electron-cyclotron emission and absorption in fusion plasmas, Nucl. Fusion 23 (1983) 1153-1257, https://doi.org/10.1088/0029-5515/23/9/005.
  27. I.H. Hutchinson, Principles of plasma diagnostics, Plasma Phys. Contr. Fusion 44 (2002) 2603, https://doi.org/10.1088/0741-3335/44/12/701.
  28. B. Lloyd, J.W. Ahn, R.J. Akers, L.C. Appel, E.R. Arends, K.B. Axon, R.J. Buttery, C. Byrom, P.G. Carolan, C. Challis, D. Ciric, N.J. Conway, M. Cox, G.F. Counsell, G. Cunningham, A. Darke, A. Dnestrovskij, J. Dowling, M.R. Dunstan, A.R. Field, S.J. Fielding, S. Gee, M.P. Gryaznevich, P. Helander, M. Hole, M.B. Hood, P.A. Jones, A. Kirk, I.P. Lehane, G.P. Maddison, S.J. Manhood, R. Martin, G.J. McArdle, K.G. McClements, M.A. McGrath, H. Meyer, A.W. Morris, S.K. Nielsen, M. Nightingale, A. Patel, T. Pinfold, M.N. Price, J. Qin, C. Ribeiro, C.M. Roach, D.C. Robinson, O. Sauter, V. Shevchenko, S. Shibaev, K. Stammers, A. Sykes, A. Tabasso, D. Taylor, M.R. Tournianski, G. Turri, M. Valovic, G. Voss, M.J. Walsh, S. Warder, J.R. Watkins, H.R. Wilson, Y. Yang, S. You, Overview of recent experimental results on MAST, Nucl. Fusion 43 (2003) 1665e1673, https://doi.org/10.1088/0029-5515/43/12/012.
  29. A. Kirk, T. Eich, A. Herrmann, H.W. Muller, L.D. Horton, G.F. Counsell, M. Price, V. Rohde, V. Bobkov, B. Kurzan, J. Neuhauser, H. Wilson, A.U.a.M. Teams, The spatial structure of type-I ELMs at the mid-plane in ASDEX Upgrade and a comparison with data from MAST, Plasma Phys. Contr. Fusion 47 (2005) 995-1013, https://doi.org/10.1088/0741-3335/47/7/003.
  30. A. Kirk, B. Koch, R. Scannell, H.R. Wilson, G. Counsell, J. Dowling, A. Herrmann, R. Martin, M. Walsh, M. team, Evolution of filament structures during edgelocalized modes in the MAST Tokamak, Phys. Rev. Lett. 96 (2006), 185001, https://doi.org/10.1103/PhysRevLett.96.185001.
  31. J.H. Yu, D.L. Rudakov, A.Y. Pigarov, R.D. Smirnov, N.H. Brooks, S.H. Muller, W.P. West, Fast camera imaging of dust in the DIII-D tokamak, J. Nucl. Mater. 390-91 (2009) 216-219, https://doi.org/10.1016/j.jnucmat.2009.01.053.
  32. S. von Goeler, W. Stodiek, N. Sauthoff, Studies of internal disruptions and m=1 oscillations in tokamak discharges with soft-x-ray techniques, Phys. Rev. Lett. 33 (1974) 1201, https://doi.org/10.1103/PhysRevLett.33.1201.
  33. I.G.J. Classen, J.E. Boom, W. Suttrop, E. Schmid, B. Tobias, C.W. Domier, N.C. Luhmann, A.J.H. Donne, R.J.E. Jaspers, P.C. de Vries, H.K. Park, T. Munsat, M. Garcia-Munoz, P.A. Schneider, 2D electron cyclotron emission imaging at ASDEX Upgrade (invited), Rev. Sci. Instrum. 81 (2010), 10D929, https://doi.org/10.1063/1.3483214.
  34. B. Tobias, C.W. Domier, T. Liang, X. Kong, L. Yu, G.S. Yun, H.K. Park, I.G. Classen, J.E. Boom, A.J. Donne, T. Munsat, R. Nazikian, M. Van Zeeland, R.L. Boivin, N.C. Luhmann Jr., Commissioning of electron cyclotron emission imaging instrument on the DIII-D tokamak and first data, Rev. Sci. Instrum. 81 (2010), 10D928, https://doi.org/10.1063/1.3460456.
  35. G.S. Yun, W. Lee, M.J. Choi, J.B. Kim, H.K. Park, C.W. Domier, B. Tobias, T. Liang, X. Kong, N.C. Luhmann Jr., A.J. Donne, Development of KSTAR ECE imaging system for measurement of temperature fluctuations and edge density fluctuations, Rev. Sci. Instrum. 81 (2010), 10D930, https://doi.org/10.1063/1.3483209.
  36. G.S. Yun, W. Lee, M.J. Choi, J. Lee, H.K. Park, B. Tobias, C.W. Domier, N.C. Luhmann Jr., A.J. Donne, J.H. Lee, K. Team, Two-dimensional visualization of growth and burst of the edge-localized filaments in KSTAR H-mode plasmas, Phys. Rev. Lett. 107 (2011), 045004, https://doi.org/10.1103/PhysRevLett.107.045004.
  37. G. Yun, W. Lee, M. Choi, J. Lee, H. Park, C. Domier, N. Luhmann Jr., B. Tobias, A. Donne, J. Lee, Two-dimensional imaging of edge-localized modes in KSTAR plasmas unperturbed and perturbed by n= 1 external magnetic fields, Phys. Plasmas 19 (2012), 056114, https://doi.org/10.1063/1.3694842.
  38. G.S. Yun, W. Lee, M.J. Choi, J. Lee, M. Kim, J. Leem, Y. Nam, G.H. Choe, H.K. Park, H. Park, D.S. Woo, K.W. Kim, C.W. Domier, N.C. Luhmann Jr., N. Ito, A. Mase, S.G. Lee, Quasi 3D ECE imaging system for study of MHD instabilities in KSTAR, Rev. Sci. Instrum. 85 (2014), 11D820, https://doi.org/10.1063/1.4890401.
  39. M.A. Lieberman, A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, John Wiley & Sons, 2005.
  40. S.L. Chen, T. Sekiguchi, Instantaneous direct-display system of plasma parameters by means of triple probe, J. Appl. Phys. 36 (1965) 2363e2375, https://doi.org/10.1063/1.1714492.
  41. J. Bak, Y. Oh, H. Kim, S. Hahn, S. Yoon, Y. Jeon, W. Xiao, W. Ko, W. Kim, J. Kwak, Electric probe measurements at edge region during H-mode discharges in KSTAR, Contrib. Plasma Phys. 53 (2013) 69-74, https://doi.org/10.1002/ctpp.201310012.
  42. J. Bak, H. Kim, M. Bae, J. Juhn, D. Seo, E. Bang, S. Shim, K. Chung, H. Lee, S. Hong, Investigation of SOL parameters and divertor particle flux from electric probe measurements in KSTAR, J. Nucl. Mater. 463 (2015) 424-427, https://doi.org/10.1016/j.jnucmat.2014.11.075.
  43. H.S. Kim, J.G. Bak, M.K. Bae, K.S. Chung, S.H. Hong, Electric probe diagnostics for measuring SOL parameters, wall and divertor fluxes in KSTAR, Fusion Eng. Des. 109 (2016) 809-816, https://doi.org/10.1016/j.fusengdes.2016.01.070.
  44. M.-K. Bae, R. Pitts, J. Bak, S.-H. Hong, H. Kim, H. Lee, I. Kang, K.-S. Chung, Type I ELM filament heat fluxes on the KSTAR main chamber wall, Nucl. Mater. Energy 12 (2017) 1259-1264, https://doi.org/10.1016/j.nme.2017.04.006.
  45. R. Van Nieuwenhove, G. Van Oost, Novel Langmuir probe technique for the real-time measurement of the electron temperature, Rev. Sci. Instrum. 59 (1988) 1053-1056, https://doi.org/10.1063/1.1139724.
  46. J.A. Boedo, D. Gray, R.W. Conn, P. Luong, M. Schaffer, R.S. Ivanov, A.V. Chernilevsky, G. Van Oost, T. Team, On the harmonic technique to measure electron temperature with high time resolution, Rev. Sci. Instrum. 70 (1999) 2997-3006, https://doi.org/10.1063/1.1149888.
  47. D.L. Rudakov, J.A. Boedo, R.A. Moyer, R.D. Lehmer, G. Gunner, J.G. Watkins, Fast electron temperature diagnostic based on Langmuir probe current harmonic detection on DIII-D, Rev. Sci. Instrum. 72 (2001) 453-456, https://doi.org/10.1063/1.1310577.
  48. M.H. Lee, S.H. Jang, C.W. Chung, Floating probe for electron temperature and ion density measurement applicable to processing plasmas, J. Appl. Phys. 101 (2007), 033305, https://doi.org/10.1063/1.2204352.
  49. S.H. Jang, G.H. Kim, C.W. Chung, Harmonic analysis of sideband signals generated in plasmas, Thin Solid Films 519 (2011) 7042-7044, https://doi.org/10.1016/j.tsf.2011.04.132.
  50. D.H. Kim, H.C. Lee, Y.S. Kim, C.W. Chung, Plasma diagnostic method using intermodulation frequencies in a Langmuir probe, Appl. Phys. Lett. 103 (2013), 084103, https://doi.org/10.1063/1.4818822.
  51. D.H. Kim, S.H. Hong, I.S. Park, H.C. Lee, H.J. Kang, C.W. Chung, Probe diagnostics in the far scrape-off layer plasma of Korea Superconducting Tokamak Advanced Research tokamak using a sideband harmonic method, Rev. Sci. Instrum. 86 (2015), 123508, https://doi.org/10.1063/1.4937610.
  52. K.-Y. Kim, S.-H. Son, S.-H. Hong, I.-S. Park, J.-H. Kim, J.-w. Lee, C.-W. Chung, Simultaneous measurements of plasma parameters and blob characteristics at the far-SOL region using a hybrid probe in KSTAR, Fusion Eng. Des. 172 (2021), 112900, https://doi.org/10.1016/j.fusengdes.2021.112900.
  53. I.S. Park, D.H. Kim, K.H. Kim, C.W. Chung, Temporal evolution of twodimensional electron temperature and ion flux on a substrate in a pulsedpower inductively coupled plasma, Phys. Plasmas 24 (2017), 053510, https://doi.org/10.1063/1.4982815.
  54. B.A. Carreras, V.E. Lynch, B. LaBombard, Structure and properties of the electrostatic fluctuations in the far scrape-off layer region of Alcator C-Mod, Phys. Plasmas 8 (2001) 3702-3707, https://doi.org/10.1063/1.1387266.
  55. B. LaBombard, R.L. Boivin, M. Greenwald, J. Hughes, B. Lipschultz, D. Mossessian, C.S. Pitcher, J.L. Terry, S.J. Zweben, A. Grp, Particle transport in the scrape-off layer and its relationship to discharge density limit in Alcator CMod, Phys. Plasmas 8 (2001) 2107-2117, https://doi.org/10.1063/1.1352596.
  56. D. Shepard, A two-dimensional interpolation function for irregularly-spaced data, in: Proceedings of the 1968 23rd ACM National Conference, New York, United States, August 27-29, 1968.
  57. R. Franke, G. Nielson, Smooth interpolation of large sets of scattered data, Int. J. Numer. Methods Eng. 15 (1980) 1691e1704, https://doi.org/10.1002/nme.1620151110.
  58. Y.U. Nam, K.D. Lee, A 280 GHz single-channel millimeter-wave interferometer system for KSTAR, Rev. Sci. Instrum. 79 (2008), 10E705, https://doi.org/10.1063/1.2957924.
  59. H.K. Na, S. Sajjad, J.M. Park, M. Kwon, Configuration and installation design of optical diagnostic systems on KSTAR, Fusion Eng. Des. 86 (2011) 66e70, https://doi.org/10.1016/j.fusengdes.2010.08.014.
  60. E. Doyle, R. Groebner, K. Burrell, P. Gohil, T. Lehecka, N. Luhmann Jr., H. Matsumoto, T. Osborne, W. Peebles, R. Philipona, Modifications in turbulence and edge electric fields at the LeH transition in the DIII-D tokamak, Phys. Fluid. Plasma Phys. 3 (1991) 2300-2307, https://doi.org/10.1063/1.859597.
  61. D. D'ippolito, J. Myra, S. Zweben, Convective transport by intermittent blobfilaments: comparison of theory and experiment, Phys. Plasmas 18 (2011), 060501, https://doi.org/10.1063/1.3594609.
  62. J. Marki, R.A. Pitts, T. Eich, A. Herrmann, J. Horacek, F. Sanchez, G. Veres, Sheath heat transmission factors on TCV, J. Nucl. Mater. 363 (2007) 382-388, https://doi.org/10.1016/j.jnucmat.2007.01.197.
  63. J.G. Bak, H.S. Kim, M.K. Bae, K.S. Chung, S.H. Hong, Study on divertor particle and heat fluxes from electric probe measurements during ELMy H-modes in KSTAR, Fusion Eng. Des. 109 (2016) 836-842, https://doi.org/10.1016/j.fusengdes.2016.01.066.