DOI QR코드

DOI QR Code

Cesium and strontium recovery from LiCl-KCl eutectic salt using electrolysis with liquid cathode

  • Jang, Junhyuk (Radioactive Waste Disposal Research Division, Korea Atomic Energy Research Institute) ;
  • Lee, Minsoo (Radioactive Waste Disposal Research Division, Korea Atomic Energy Research Institute) ;
  • Kim, Gha-Young (Radioactive Waste Disposal Research Division, Korea Atomic Energy Research Institute) ;
  • Jeon, Sang-Chae (School of Materials Science and Engineering, Changwon National University)
  • Received : 2022.02.17
  • Accepted : 2022.05.16
  • Published : 2022.10.25

Abstract

Deposition behaviors of Sr and Cs in various liquid cathodes, such as Zn, Bi, Cd, and Pb, were examined to evaluate their recovery from LiCl-KCl eutectic salt. Cations in the salt were deposited on the liquid cathode, exhibiting potential of -1.8 to -2.1 V (vs. Ag/AgCl). Zn cathode had successful deposition of Sr and exhibited the highest recovery efficiency, up to 55%. Meanwhile, the other liquid cathodes showed low current efficiencies, below 18%, indicating LiCl-KCl salt decomposition. Sr was recovered from the Zn cathode as irregular rectangular SrZn13 particles. A negligible amount of Cs was deposited on the entire liquid cathode, indicating that Cs was hardly deposited on liquid cathodes. Based on these results, we propose that liquid Zn cathode can be used for cleaning Sr in LiCl-KCl salt.

Keywords

Acknowledgement

This work was supported by the Institute for Korea Spent Nuclear Fuel (iKSNF) and a National Research Foundation of Korea (NRF) grant funded by the Korean government (Ministry of Science and ICT, MSIT) (2021M2E1A1085193, 2021M2E3A2041351).

References

  1. J. Yoo, B. Lee, H. Lee, E. Kim, Investigation of pyroprocessing concept and its applicability as an alternative technology for conventional fuel cycle, J. Korean Radioact. Waste Soc. 5 (2007) 283-295.
  2. J. Yoo, K. Hong, H. Lee, A conceptual design study for a spent fuel pyroprocessing facility of a demonstration scale, J. Korean Radioact. Waste Soc. 6 (2008) 233-244.
  3. S.D. Herrmann, S.X. Li, Separation and recovery of uranium metal from spent light water reactor fuel via electrolytic reduction and electrorefining, Nucl. Technol. 171 (2010) 247-265, https://doi.org/10.13182/NT171-247.
  4. J.H. Lee, Y.H. Kang, S.C. Hwang, J.B. Shim, B.G. Ahn, E.H. Kim, S.W. Park, Electrodeposition characteristics of uranium in molten LiCl-KCl eutectic and its salt distillation behavior, J. Nucl. Sci. Technol. 43 (2006) 263-269, https://doi.org/10.1080/18811248.2006.9711088.
  5. J.H. Lee, Y.H. Kang, S.C. Hwang, E.H. Kim, J.H. Yoo, H.S. Park, Separation characteristics of a spent fuel surrogate in the molten salt electrorefining process, J. Mater. Process. Technol. 189 (2007) 268-272, https://doi.org/10.1016/j.jmatprotec.2007.01.034.
  6. M.F. Simpson, Developments of Spent Nuclear Fuel Pyroprocessing Technology at Idaho, National Laboratory, 2012. INL/EXT-12-25124.
  7. D. Vaden, S.X. Li, B.R. Westphal, K.B. Davies, T.A. Johnson, D.M. Pace, Engineering-scale liquid cadmium cathode experiments, Nucl. Technol. 162 (2008) 124-128, https://doi.org/10.13182/NT08-A3938.
  8. J. Serp, P. Lefebvre, R. Malmbeck, J. Rebizant, P. Vallet, J.P. Glatz, Separation of plutonium from lanthanum by electrolysis in LiCl-KCl onto molten bismuth electrode, J. Nucl. Mater. 340 (2005) 266-270, https://doi.org/10.1016/j.jnucmat.2004.12.004.
  9. Nuclear science, NEA/NSC/WPFC/DOC(2012), in: Spent Nuclear Fuel Reprocessing Flow Sheet, OECD, 2012, p. 15.
  10. H. Eun, J.H. Choi, Y.-Z. Cho, I.H. Cho, H.-S. Park, G.I. Park, Study on an optimal condition of closed chamber distillation equipment for regeneration of LiClKCl eutectic salt containing rare earth phosphates, Nucl. Technol. 188 (2014) 185-191, https://doi.org/10.13182/NT13-146.
  11. H.C. Eun, J.H. Choi, N.Y. Kim, T.K. Lee, S.Y. Han, K.R. Lee, H.S. Park, D.H. Ahn, A reactive distillation process for the treatment of LiCl-KCl eutectic waste salt containing rare earth chlorides, J. Nucl. Mater. 480 (2016) 69-74, https://doi.org/10.1016/j.jnucmat.2016.07.063.
  12. S.W. Kim, S.-K. Lee, M.K. Jeon, E.Y. Choi, Electrochemical behavior of CsI in LiCl molten salt, Sci. Technol. Nucl. Install. (2020), https://doi.org/10.1155/2020/8852351 article ID 8852351.
  13. S.X. Li, S.D. Herrmann, K.M. Goff, M.F. Simpson, R.W. Benedict, Actinide recovery experiments with bench-scale liquid cadmium cathode in real fission product-laden molten salt, Nucl. Technol. 165 (2009) 190-199, https://doi.org/10.13182/NT09-A4085.
  14. S.X. Li, S.D. Herrmann, M.F. Simpson, Experimental Investigations into U/TRU recovery using a liquid cadmium cathode and salt containing high rare earth concentrations, in: Proceedings of Global, Sep. 6-11, 2009. Paris, France paper 9058.
  15. H. Kim, N. Smith, K. Kumar, T. Lichtenstein, Electrochemical separation of barium into liquid bismuth by controlling deposition potentials, Electrochim. Acta 220 (2016) 237-244, https://doi.org/10.1016/j.electacta.2016.10.083.
  16. T. Lichtenstein, T.P. Nigl, N.D. Smith, H. Kim, Electrochemical deposition of alkaline-earth elements (Sr and Ba) from LiCl-KCl-SrCl2-BaCl2 solution using a liquid bismuth electrode, Electrochim. Acta 281 (2018) 810-815, https://doi.org/10.1016/j.electacta.2018.05.097.
  17. M.E. Woods, S. Phongikaroon, Assessment on recovery of cesium, strontium, and barium from eutectic LiCl-KCl salt with liquid bismuth system, J. Nucl. Fuel Cycle Waste Technol. 18 (2020) 421-437, https://doi.org/10.7733/jnfcwt.2020.18.4.421.
  18. Z. Gao, X. Kong, Jiafei Yi, B. Yang, B. Xu, D. Liu, J. Wu, H. Xiong, Vacuum gasification-directional condensation for separation of tellurium from Lead anode slime, Metals 11 (2021) 1535-1545, https://doi.org/10.3390/met11101535.
  19. M. Matsumiya, R. Takagi, R. Fujita, Recovery of Eu2+ and Sr2+ using liquid metallic cathodes in molten NaCl-KCl and KCl system, J. Nucl. Sci. Technol. 34 (1997) 310-317, https://doi.org/10.1080/18811248.1997.9733666.
  20. Outotec, HSC Chemistry, Ver. 9.0, Outotec Research Information Center, Finland, 2018.