DOI QR코드

DOI QR Code

Numerical analysis of temperature fluctuation characteristics associated with thermal striping phenomena in the PGSFR

  • Received : 2022.01.20
  • Accepted : 2022.05.14
  • Published : 2022.10.25

Abstract

Thermal striping is a complex thermal-hydraulic phenomenon caused by fluid temperature fluctuations that can also cause high-cycle thermal fatigue to the structural wall of sodium-cooled fast reactors (SFRs). Numerical simulations using large-eddy simulation (LES) were performed to predict and evaluate the characteristics of the temperature fluctuations related to thermal striping in the upper internal structure (UIS) of the prototype generation-IV sodium-cooled fast reactor (PGSFR). Specific monitoring points were established for the fluid region near the control rod driving mechanism (CRDM) guide tubes, CRDM guide tube walls, and UIS support plates, and the normalized mean and fluctuating temperatures were investigated at these points. It was found that the location of the maximum amplitude of the temperature fluctuations in the UIS was the lowest end of the inner wall of the CRDM guide tube, and the maximum value of the normalized fluctuating temperatures was 17.2%. The frequency of the maximum temperature fluctuation on the CRDM guide tube walls, which is an important factor in thermal striping, was also analyzed using the fast Fourier transform analysis. These results can be used for the structural integrity evaluation of the UIS in SFR.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant and National Research Council of Science & Technology (NST) grant funded by the Korean government (MSIT) [grant numbers 2021M2E2A2081061, CAP20032-100].

References

  1. P. Chellapandi, S.C. Chetal, B. Raj, Thermal striping limits for components of sodium cooled fast spectrum reactors, Nucl. Eng. Des. 239 (2009) 2754-2765. https://doi.org/10.1016/j.nucengdes.2009.08.014
  2. S. Moriya, I. Ohshima, Hydraulic similarity in the temperature fluctuation phenomena of non-isothermal coaxial jets, Nucl. Eng. Des. 120 (1990) 385-393. https://doi.org/10.1016/0029-5493(90)90388-E
  3. M. Wakamatsu, H. Nei, K. Hashiguchi, Attenuation of temperature fluctuations in thermal striping, J. Nucl. Sci. Technol. 32 (1995) 752-762. https://doi.org/10.1080/18811248.1995.9731770
  4. H.Y. Nam, J.M. Kim, Thermal Striping Experimental Data, Internal Report, LMR/IOC-ST-002-04-Rev. 0/04, KAERI, 2004.
  5. N. Kimura, H. Miyakoshi, H. Kamide, Experimental investigation on transfer characteristics of temperature fluctuation from liquid sodium to wall in parallel triple-jet, Int. J. Heat Mass Tran. 50 (2007) 2024-2036. https://doi.org/10.1016/j.ijheatmasstransfer.2006.09.030
  6. D. Lu, Q. Cao, J. Lv, Y. Xiao, Experimental study on three-dimensional temperature fluctuation caused by coaxial-jet flows, Nucl. Eng. Des. 243 (2012) 234-242. https://doi.org/10.1016/j.nucengdes.2011.11.017
  7. M. Nishimura, A. Tokuhiro, N. Kimura, H. Kamide, Numerical study on mixing of oscillating quasi-planar jets with low Reynolds number turbulent stress and heat flux equation models, Nucl. Eng. Des. 202 (2000) 77-95. https://doi.org/10.1016/S0029-5493(00)00287-9
  8. S.K. Choi, S.O. Kim, Evaluation of turbulence models for thermal striping in a triple jet, ASME. J. Pressure Vessel Technol. 129 (2007) 583-592. https://doi.org/10.1115/1.2767337
  9. S. Chacko, Y.M. Chung, S.K. Choi, H.Y. Nam, H.Y. Jeong, Large-eddy simulation of thermal striping in unsteady non-isothermal triple jet, Int. J. Heat Mass Tran. 54 (2011) 4400-4409. https://doi.org/10.1016/j.ijheatmasstransfer.2011.05.002
  10. Y.Q. Yu, E. Merzari, J.W. Thomas, A. Obabko, S.M. Aithal, Steady and unsteady calculations on thermal striping phenomena in triple-parallel jet, Nucl. Eng. Des. 312 (2017) 429-437. https://doi.org/10.1016/j.nucengdes.2016.06.015
  11. J. Kobayashi, N. Kimura, A. Tobita, H. Kamide, Study on thermal striping at UIS of advanced loop type fast reactor (water experiment using a 1/3 scale 60 degree sector model), in: Proc. of 17th Int. Conf. on Nuclear Engineering, Brussels, Belgium, July 12-16, 2009.
  12. S.K. Choi, D.E. Kim, S.H. Ko, T.H. Lee, Large eddy simulation of thermal striping in the upper plenum of the PGSFR, J. Nucl. Sci. Technol. 52 (2015) 878-886. https://doi.org/10.1080/00223131.2014.990532
  13. F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J. 32 (1994) 1598-1605. https://doi.org/10.2514/3.12149
  14. CD-adapco, User Guide STAR-CCM+ Version 14.04, CD-adapco, 2019.
  15. F. Nicoud, F. Ducros, Subgrid-scale stress modeling based on the square of the velocity gradient tensor, Flow, Turbul. Combust. 62 (1999) 183-200. https://doi.org/10.1023/A:1009995426001
  16. H. Reichardt, Vollstandige darstellung der turbulenten geschwindigkeitsver-teilung in glatten leitungen, ZAMM-J. Appl. Math. Mech./Z. Angew. Math. Mech. 31 (1951) 208-219. https://doi.org/10.1002/zamm.19510310704
  17. B.A. Kader, Temperature and concentration profiles in fully turbulent boundary layers, Int. J. Heat Mass Tran. 24 (1981) 1541-1544. https://doi.org/10.1016/0017-9310(81)90220-9
  18. T.H. Shih, W.W. Liou, A. Shabbir, Z. Yang, J. Zhu, A new k-ε eddy-viscosity model for high Reynolds number turbulent flows - model development and validation, Comput. Fluids 24 (1995) 227-238. https://doi.org/10.1016/0045-7930(94)00032-T
  19. D. Tenchine, S. Vandroux, V. Barthel, O. Cioni, Experimental and numerical studies on mixing jets for sodium cooled fast reactors, Nucl. Eng. Des. 263 (2013) 263-272. https://doi.org/10.1016/j.nucengdes.2013.06.001