DOI QR코드

DOI QR Code

Role of modifiers on the structural, mechanical, optical and radiation protection attributes of Eu3+ incorporated multi constituent glasses

  • Poojha, M.K. Komal (Department of Physics, The Gandhigram Rural Institute-Deemed to be University) ;
  • Marimuthu, K. (Department of Physics, The Gandhigram Rural Institute-Deemed to be University) ;
  • Teresa, P. Evangelin (Department of Physics, The Gandhigram Rural Institute-Deemed to be University) ;
  • Almousa, Nouf (Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University) ;
  • Sayyed, M.I. (Department of Physics, Faculty of Science, Isra University)
  • 투고 : 2022.03.30
  • 심사 : 2022.05.04
  • 발행 : 2022.10.25

초록

The effect of modifiers on the optical features and radiation defying ability of the Eu3+ ions doped multi constituent glasses was examined. XRD has established the amorphous nature of the specimen. The presence of various functional/fundamental groups in the present glasses was analyzed through FTIR spectra. The physical, structural and elastic traits of the glasses were explored. The variation in the structural compactness of the glass structure according to the incorporated modifier was enlightened to describe their suitability for a better shielding media. For the examined glasses, the metallization criterion value varied in the range 0.613-0.692, indicating the non-metallic character of the glasses with possible nonlinear optical applications. The computed elastic moduli expose the Li-containing glass (BTLi:Eu) to be tightly packed and rigid, which is a requirement for a better shielding channel. Furthermore, the optical bandgap and the Urbach energy values are calculated based on the optical absorption spectra. The evaluated bonding parameters revealed the nature of the fabricated glasses covalent. In addition, we investigated the radiation attenuation attributes of the prepared Eu3+ ions doped multi constituent glasses using Phy-X software. We determined the linear attenuation coefficient (LAC) and reported the influence of the five oxides Li2O3, CaO, BaO, SrO, and ZnO on the LAC values. The LAC varied between 0.433 and 0.549 cm-1 at 0.284 MeV. The 39B2O3-25TeO2-15Li2O3-10Na2O-10K2O-1Eu2O3 glass has a much smaller LAC than the other glasses.

키워드

과제정보

The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project Number (PNURSP2022R111), princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

참고문헌

  1. Mengge Dong, Suying Zhou, Xiangxin Xue, M.I. Sayyed, Daria Tishkevich, Alex Trukhanov, Chao Wang, Study of comprehensive shielding behaviors of chambersite deposit for neutron and gamma ray, Prog. Nucl. Energy 146 (2022), 104155, https://doi.org/10.1016/j.pnucene.2022.104155.
  2. I.O. Olarinoye, S. Alomairy, C. Sriwunkum, M.S. Al-Buriahi, Effect of Ag2O/V2O5 substitution on the radiation shielding ability of tellurite glass system via XCOM approach and FLUKA simulations, Phys. Scripta 96 (2021), 065308, https://doi.org/10.1088/1402-4896/abf26a.
  3. Y. Al-Hadeethi, M.I. Sayyed, Evaluation of gamma ray shielding characteristics of CaF2-BaO-P2O5 glass system using Phy-X/PSD computer program, Prog. Nucl. Energy 126 (2020), 103397, https://doi.org/10.1016/j.pnucene.2020.103397.
  4. Y. Al-Hadeethi, M.I. Sayyed, BaO-Li2O-B2O3 glass systems: potential utilization in gamma radiation protection, Prog. Nucl. Energy 129 (2020), 103511, https://doi.org/10.1016/j.pnucene.2020.103511.
  5. M. Kamislioglu, Research on the effects of bismuth borate glass system on nuclear radiation shielding parameters, Results Phys. 22 (2021) 103844, https://doi.org/10.1016/j.rinp.2021.103844.
  6. B.O. Elbashir, M.G. Dong, M.I Sayyed, S.A.M. Issa, K.A. Matori, M.H.M. Zaid, Comparison of Monte Carlo simulation of gamma ray attenuation coefficients of amino acids with XCOM program and experimental data, Results Phys. 9 (2018) 6-11, https://doi.org/10.1016/j.rinp.2018.01.075.
  7. N.K. Libeesh, K.A. Naseer, K.A. Mahmoud, M.I. Sayyed, S. Arivazhagan, M.S. Alqahtani, E.S. Yousef, M.U. Khandaker, Applicability of the multispectral remote sensing on determining the natural rock complexes distribution and their evaluability on the radiation protection applications, Radiat. Phys. Chem. 193 (2022), 110004, https://doi.org/10.1016/j.radphyschem.2022.110004.
  8. N.K. Libeesh, K.A. Naseer, S. Arivazhagan, A.F. Abd El-Rehim, K.A. Mahmoud, M.I. Sayyed, M.U. Khandaker, Advanced nuclear radiation shielding studies of some mafic and ultramafic complexes with lithological mapping, Radiat. Phys. Chem. 189 (2021), 109777, https://doi.org/10.1016/j.radphyschem.2021.109777.
  9. N.K. Libeesh, K.A. Naseer, S. Arivazhagan, A.F.A. El-Rehim, G. ALMisned, H.O. Tekin, Characterization of Ultramafic-Alkaline-Carbonatite complex for radiation shielding competencies: an experimental and Monte Carlo study with lithological mapping, Ore Geol. Rev. 142 (2022), 104735, https://doi.org/10.1016/j.oregeorev.2022.104735.
  10. N.K. Libeesh, K.A. Naseer, S. Arivazhagan, K.A. Mahmoud, M.I. Sayyed, M.S. Alqahtani, E.S. Yousef, Multispectral remote sensing for determination the Ultra-mafic complexes distribution and their applications in reducing the equivalent dose from the radioactive wastes, Eur. Phys. J. Plus. 137 (2022) 267, https://doi.org/10.1140/epjp/s13360-022-02473-5.
  11. S. Arivazhagan, K.A. Naseer, K.A. Mahmoud, K.V. Arun Kumar, N.K. Libeesh, M.I. Sayyed, M.S. Alqahtani, E.S. Yousef, M.U. Khandaker, Gamma-ray protection capacity evaluation and satellite data based mapping for the limestone, charnockite, and gneiss rocks in the Sirugudi taluk of the Dindigul district, India, Radiat, Phys. Chem. 196 (2022), 110108, https://doi.org/10.1016/j.radphyschem.2022.110108.
  12. O. Agar, M.I. Sayyed, H.O. Tekin, K.M. Kaky, S.O. Baki, I. Kityk, An investigation on shielding properties of BaO, MoO3 and P2O5 based glasses using MCNPX code, Results Phys. 12 (2019) 629-634, 109386, https://doi.org/10.1016/j.rinp.2018.12.003.
  13. A. Saeed, S. Alomairy, C. Sriwunkum, M.S. Al-Buriahi, Neutron and charged particle attenuation properties of volcanic rocks, Radiat. Phys. Chem. 184 (2021), 109454, https://doi.org/10.1016/j.radphyschem.2021.109454.
  14. M.S. Al-Buriahi, S. Alomairy, C. Mutuwong, Effects of MgO addition on the radiation attenuation properties of 45S5 bioglass system at the energies of medical interest: an in silico study, J. Australas. Ceram. Soc. 57 (2021) 1107-1115, https://doi.org/10.1007/s41779-021-00605-1.
  15. G. Kilic, E. Ilik, S.A.M. Issa, H.O.O. Tekin, Synthesis and structural, optical, physical properties of Gadolinium (III) oxide reinforced TeO2-B2O3-(20-x) Li2O-xGd2O3 glass system, J. Alloys Compd. 877 (2021), 160302, https://doi.org/10.1016/j.jallcom.2021.160302.
  16. M.S. Al-Buriahi, C. Eke, S. Alomairy, A. Yildirim, H.I. Alsaeedy, C. Sriwunkum, Radiation attenuation properties of some commercial polymers for advanced shielding applications at low energies, Polym. Adv. Technol. 32 (2021) 2386-2396, https://doi.org/10.1002/pat.5267.
  17. G. Kilic, E. Ilik, S.A.M. Issa, B. Issa, U.G. Issever, H.M.H. Zakaly, H.O. Tekin, Fabrication, structural, optical, physical and radiation shielding characterization of indium (III) oxide reinforced 85TeO2-(15-x)ZnO-xIn2O3 glass system, Ceram. Int. 47 (2021) 27305-27315, https://doi.org/10.1016/j.ceramint.2021.06.152.
  18. G. Kilic, E. Ilik, S.A.M. Issa, B. Issa, M.S. Al-Buriahi, U.G. Issever, H.M.H. Zakaly, H.O. Tekin, Ytterbium (III) oxide reinforced novel TeO2-B2O3-V2O5 glass system: synthesis and optical, structural, physical and thermal properties, Ceram. Int. 47 (2021) 18517-18531, https://doi.org/10.1016/j.ceramint.2021.03.175.
  19. G. Kilic, E. Ilik, K.A. Mahmoud, F.I. El-Agawany, S. Alomairy, Y.S. Rammah, The role of B2O3 on the structural, thermal, and radiation protection efficacy of vanadium phosphate glasses, Appl. Phys. A 127 (2021) 265, https://doi.org/10.1007/s00339-021-04409-9.
  20. K.A. Naseer, K. Marimuthu, M.S. Al-Buriahi, A. Alalawi, H.O. Tekin, Influence of Bi2O3 concentration on barium-telluro-borate glasses: physical, structural and radiation-shielding properties, Ceram. Int. 47 (2021) 329-340, https://doi.org/10.1016/j.ceramint.2020.08.138.
  21. M.S. Al-Buriahi, Y.S.M. Alajerami, A.S. Abouhaswa, A. Alalawi, T. Nutaro, B. Tonguc, Effect of chromium oxide on the physical, optical, and radiation shielding properties of lead sodium borate glasses, J. Non-Cryst. Solids 544 (2020), 120171, https://doi.org/10.1016/j.jnoncrysol.2020.120171.
  22. A.S. Abouhaswa, M.S. Al-Buriahi, M. Chalermpon, Y.S. Rammah, Influence of ZrO2 on gamma shielding properties of lead borate glasses, Appl. Phys. A 126 (2020) 78, https://doi.org/10.1007/s00339-019-3264-7.
  23. J.S. Alzahrani, M.A. Alothman, C. Eke, H. Al-Ghamdi, D.A. Aloraini, M.S. AlBuriahi, Simulating the radiation shielding properties of TeO2-Na2O-TiO glass system using PHITS Monte Carlo code, Comput. Mater. Sci. 196 (2021), 110566, https://doi.org/10.1016/j.commatsci.2021.110566.
  24. G. Kilic, S.A.M. Issa, E. Ilik, O. Kilicoglu, U.G. Issever, R. El-Mallawany, B. Issa, H.O. Tekin, Physical, thermal, optical, structural and nuclear radiation shielding properties of Sm2O3 reinforced borotellurite glasses, Ceram. Int. 47 (2021) 6154-6168, https://doi.org/10.1016/j.ceramint.2020.10.194.
  25. G.A. Alharshan, C. Eke, M.S. Al-Buriahi, Radiation-transmission and self-absorption factors of P2O5 - SrO - Sb2O3 glass system, Radiat, Phys. Chem. 193 (2022), 109938, https://doi.org/10.1016/j.radphyschem.2021.109938.
  26. G. Kilic, F.I.E.I.E. Agawany, B.O. Ilik, K.A.A. Mahmoud, E. Ilik, Y.S.S. Rammah, Ta2O5 reinforced Bi2O3-TeO2-ZnO glasses: fabrication, physical, structural characterization, and radiation shielding efficacy, Opt. Mater. 112 (2021), 110757, https://doi.org/10.1016/j.optmat.2020.110757.
  27. M.I. Sayyed, N. Dwaikat, M.H.A. Mhareb, A.N. D'Souza, N. Almousa, Y.S.M. Alajerami, F. Almasoud, K.A. Naseer, S.D. Kamath, M.U. Khandaker, H. Osman, S. Alamri, Effect of TeO2 addition on the gamma radiation shielding competence and mechanical properties of boro-tellurite glass: an experimental approach, J. Mater. Res. Technol. 18 (2022) 1017-1027, https://doi.org/10.1016/j.jmrt.2022.02.130.
  28. P. Vani, G. Vinitha, K.A. Naseer, K. Marimuthu, M. Durairaj, T.C. Sabari Girisun, N. Manikandan, Thulium-doped barium tellurite glasses: structural, thermal, linear, and non-linear optical investigations, J. Mater. Sci. Mater. Electron. 32 (2021) 23030e23046, https://doi.org/10.1007/s10854-021-06787-5.
  29. N. Kaur, A. Khanna, Structural characterization of borotellurite and aluminoborotellurite glasses, J. Non-Cryst. Solids 404 (2014) 116e123, https://doi.org/10.1016/j.jnoncrysol.2014.08.002.
  30. Z.A. Said Mahraz, M.R. Sahar, S.K. Ghoshal, M. Reza Dousti, Concentration dependent luminescence quenching of Er3+-doped zinc boro-tellurite glass, J. Lumin. 144 (2013) 139e145, https://doi.org/10.1016/j.jlumin.2013.06.050.
  31. K.A. Naseer, P. Karthikeyan, S. Arunkumar, P. Suthanthirakumar, K. Marimuthu, Enhanced luminescence properties of Er3+/Yb3+ doped zinc tellurofluoroborate glasses for 1.5 mm optical amplification, in: AIP Conf. Proc., AIP Conference Proceedings, 2020, https://doi.org/10.1063/5.0019171,030237.
  32. K.A. Naseer, K. Marimuthu, The impact of Er/Yb co-doping on the spectroscopic performance of bismuth borophosphate glasses for photonic applications, Vacuum 183(2021), 109788, https://doi.org/10.1016/j.vacuum.2020.109788.
  33. K. Annapoorani, K. Marimuthu, Spectroscopic properties of Eu3+ ions doped Barium telluroborate glasses for red laser applications, J. Non-Cryst. Solids 463 (2017) 148-157, https://doi.org/10.1016/j.jnoncrysol.2017.03.004.
  34. I. Kebaili, M.I. Sayyed, I. Boukhris, M.S. Al-Buriahi, Gamma-ray shielding parameters of lithium borotellurite glasses using Geant4 code, Appl. Phys. A 126 (2020) 536, https://doi.org/10.1007/s00339-020-03702-3.
  35. M.I. Sayyed, G. Lakshminarayana, Structural, thermal, optical features and shielding parameters investigations of optical glasses for gamma radiation shielding and defense applications, J. Non-Cryst. Solids 487 (2018) 53-59, https://doi.org/10.1016/j.jnoncrysol.2018.02.014.
  36. G. Lakshminarayana, S.O. Baki, A. Lira, I.V. Kityk, M.A. Mahdi, Structural, thermal, and optical absorption studies of Er3+, Tm3+, and Pr3+-doped borotellurite glasses, J. Non-Cryst. Solids 459 (2017) 150-159, https://doi.org/10.1016/j.jnoncrysol.2017.01.006.
  37. M. Dogra, K.J. Singh, K. Kaur, V. Anand, P. Kaur, P. Singh, B.S. Bajwa, Investigation of gamma ray shielding, structural and dissolution rate properties of Bi2O3 -BaO-B2O3 -Na2O glass system, Radiat, Phys. Chem. 144 (2018) 171-179, https://doi.org/10.1016/j.radphyschem.2017.08.008.
  38. B.T. Tonguc, H. Arslan, M.S. Al-Buriahi, Studies on mass attenuation coefficients, effective atomic numbers and electron densities for some biomolecules, Radiat. Phys. Chem. 153 (2018) 86-91, https://doi.org/10.1016/j.radphyschem.2018.08.025.
  39. M.S. Al-Buriahi, B.T. Tonguc, Mass attenuation coefficients, effective atomic numbers and electron densities of some contrast agents for computed tomography, Radiat. Phys. Chem. 166 (2020), 108507, https://doi.org/10.1016/j.radphyschem.2019.108507.
  40. M.S. Al-Buriahi, C. Eke, S. Alomairy, C. Mutuwong, N. Sfina, Micro-hardness and gamma-ray attenuation properties of lead iron phosphate glasses, J. Mater. Sci. Mater. Electron. 32 (2021) 13906-13916, https://doi.org/10.1007/s10854-021-05966-8.
  41. P. Evangelin Teresa, K.A. Naseer, K. Marimuthu, H. Alavian, M.I. Sayyed, Influence of modifiers on the physical, structural, elastic and radiation shielding competence of Dy3+ ions doped Alkali boro-tellurite glasses, Radiat. Phys. Chem. 189 (2021), 109741, https://doi.org/10.1016/j.radphyschem.2021.109741.
  42. P.E. Teresa, K.A. Naseer, T. Piotrowski, K. Marimuthu, D.A. Aloraini, A.H. Almuqrin, M.I. Sayyed, Optical properties and radiation shielding studies of europium doped modifier reliant multi former glasses, Optik 247 (2021), 168005, https://doi.org/10.1016/j.ijleo.2021.168005.
  43. P.E. Teresa, R. Divina, K.A. Naseer, K. Marimuthu, Study on the luminescence behavior of Dy3+ ions activated, modifier dependent alkali boro-tellurite glasses for white LED application, Optik 259 (2022), 169024, https://doi.org/10.1016/j.ijleo.2022.169024.
  44. P. Karthikeyan, R. Vijayakumar, K. Marimuthu, Luminescence studies on Dy3+ doped calcium boro-tellurite glasses for White light applications, Phys. B Condens. Matter 521 (2017) 347-354, https://doi.org/10.1016/j.physb.2017.07.018.
  45. M.N. Ami Hazlin, M.K. Halimah, F.D. Muhammad, M.F. Faznny, Optical properties of zinc borotellurite glass doped with trivalent dysprosium ion, Phys. B Condens. Matter 510 (2017) 38-42, https://doi.org/10.1016/j.physb.2017.01.012.
  46. S. Rada, P. Pascuta, M. Culea, V. Maties, M. Rada, M. Barlea, E. Culea, The local structure of europiumelead-borate glass ceramics, J. Mol. Struct. 924-926 (2009) 89-92, https://doi.org/10.1016/j.molstruc.2008.12.032.
  47. K.A. Naseer, K. Marimuthu, K.A. Mahmoud, M.I. Sayyed, Impact of Bi2O3 modifier concentration on bariumezincborate glasses: physical, structural, elastic, and radiation-shielding properties, Eur. Phys. J. Plus. 136 (2021) 116, https://doi.org/10.1140/epjp/s13360-020-01056-6.
  48. P. Suthanthirakumar, C. Basavapoornima, K. Marimuthu, Effect of Pr3+ ions concentration on the spectroscopic properties of Zinc telluro-fluoroborate glasses for laser and optical amplifier applications, J. Lumin. 187 (2017) 392-402, https://doi.org/10.1016/j.jlumin.2017.03.052.
  49. G. Sathiyapriya, K.A. Naseer, K. Marimuthu, E. Kavaz, A. Alalawi, M.S. AlBuriahi, Structural, optical and nuclear radiation shielding properties of strontium barium borate glasses doped with dysprosium and niobium, J. Mater. Sci. Mater. Electron. 32 (2021) 8570-8592, https://doi.org/10.1007/s10854-021-05499-0.
  50. K.A. Naseer, K. Marimuthu, K.A. Mahmoud, M.I. Sayyed, The concentration impact of Yb3+ on the bismuth boro-phosphate glasses: physical, structural, optical, elastic, and radiation-shielding properties, Radiat. Phys. Chem. 188 (2021), 109617, https://doi.org/10.1016/j.radphyschem.2021.109617.
  51. V. Dimitrov, S. Sakka, Linear and nonlinear optical properties of simple oxides. II, J. Appl. Phys. 79 (1996) 1741-1745, https://doi.org/10.1063/1.360963.
  52. R. Reddy, Y. Nazeer Ahammed, K. Rama Gopal, D. Raghuram, Optical electronegativity and refractive index of materials, Opt. Mater. 10 (1998) 95-100, https://doi.org/10.1016/S0925-3467(97)00171-7.
  53. M. Kumar, T.K. Seshagiri, M. Mohapatra, V. Natarajan, S.V. Godbole, Synthesis, characterization and studies of radiative properties on Eu3+-doped ZnAl2O4, J. Lumin. 132 (2012) 2810-2816, https://doi.org/10.1016/j.jlumin.2012.04.033.
  54. S. Pravinraj, M. Vijayakumar, K. Marimuthu, Enhanced luminescence behaviour of Eu3+ doped heavy metal oxide telluroborate glasses for Laser and LED applications, Phys. B Condens. Matter 509 (2017) 84-93, https://doi.org/10.1016/j.physb.2017.01.008.
  55. K.A. Naseer, G. Sathiyapriya, K. Marimuthu, T. Piotrowski, M.S. Alqahtani, E.S. Yousef, Optical, elastic, and neutron shielding studies of Nb2O5 varied Dy3+ doped barium-borate glasses, Optik 251 (2022), 168436, https://doi.org/10.1016/j.ijleo.2021.168436.
  56. W.T. Carnall, P.R. Fields, K. Rajnak, Electronic energy levels of the trivalent lanthanide aquo ions. II. Gd3+, J. Chem. Phys. 49 (1968) 4424-4442, https://doi.org/10.1063/1.1669893.
  57. K.A. Naseer, S. Arunkumar, K. Marimuthu, The impact of Er3+ ions on the spectroscopic scrutiny of Bismuth bariumtelluroborate glasses for display devices and 1.53 mm amplification, J. Non-Cryst. Solids 520 (2019), 119463, https://doi.org/10.1016/j.jnoncrysol.2019.119463.
  58. E. Sakar, O.F. Ozpolat, B. Alim, M.I. Sayyed, M. Kurudirek, Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry, Radiat. Phys. Chem. 166 (2020), 108496, https://doi.org/10.1016/j.radphyschem.2019.108496.