DOI QR코드

DOI QR Code

Impact of geometrical parameters on SGEMP responses in cylinder model

  • 투고 : 2021.12.05
  • 심사 : 2022.04.25
  • 발행 : 2022.09.25

초록

This paper is aimed to find out the impact of the geometrical parameters, mainly the radius and the height of a cylinder, on the SGEMP response including the famous scaling law in the classical cylinder model using a homemade PIC code UNIPIC-3D. We computed the electric fields at the center and at the edge on the emission head face with different radii and heights under normal X-rays incidence. The results show that the electric field will increase with the radius but decrease with the height. We analyze the scaling law that links the electric field product and fluence product, and whereafter an irreconcilable contradiction raises when the radius is changeable, which limits the application range of the scaling law. Moreover, the field-height-radius relation is found and described by a combination of logarithmic and minus one-quarter numerical fitting law firstly. Particle and magnetic field distributions are used to explain all the behaviors of the fields reasonably. All the findings will assist the evaluation of SGEMP response in spacecraft protection.

키워드

과제정보

This work was supported by the National Key Research and Development Program of China under Grant No. 2020YFA0709800 and the National Natural Science Foundation of China under Grant No. 12105227.

참고문헌

  1. S. Glasstone, P.J. Dolan, in: The Effects of Nuclear Weapons, third ed., United States Department of Defense and the Energy Research and Development Administration, Washington, DC, 1977.
  2. M.J. Bernstein, K.W. Paschen, Forward and backward photoemission yields from metals at various X-ray angles of incidence, IEEE Trans. Nucl. Sci. 20 (1973) 111-116. https://doi.org/10.1109/TNS.1973.4327380
  3. A.J. Woods, W.E. Hobbs, E.P. Wenaas, Air effects on the external SGEMP responses of a cylinder, IEEE Trans. Nucl. Sci. 28 (1981) 4467-4478. https://doi.org/10.1109/TNS.1981.4335749
  4. M.J. Schmidt, Elementary external SGEMP model for system engineering design, IEEE Trans. Nucl. Sci. 32 (1985) 4295-4299. https://doi.org/10.1109/TNS.1985.4334111
  5. D.F. Higgins, Analytic calculations of the magnetic field produced by large SGEMP boundary layers, IEEE Trans. Nucl. Sci. 35 (1988) 1320-1323. https://doi.org/10.1109/23.25459
  6. E.P. Plomb, Analytical predictions of SGEMP response and comparisons with computer calculations, IEEE Trans. Nucl. Sci. 23 (1976) 1909-1915. https://doi.org/10.1109/TNS.1976.4328598
  7. R. Holland, Comparison of FDTD particle pushing and direct differencing of Boltzmann's equation for SGEMP problems, IEEE Trans. Electromagn C. 37 (1995) 433-442. https://doi.org/10.1109/15.406532
  8. R. Holland, A self-consistent two-dimensional EMP code for space-charge limiting and secondary emission, IEEE Trans. Nucl. 23 (1976) 1927-1932. https://doi.org/10.1109/TNS.1976.4328601
  9. J. Li, et al., Verification of numerical simulation model for SGEMP generated in Flash-II accelerator environment, Modern Appl. Phys. 7 (2016), 030503.
  10. L. Wang, et al., Analysis on numerical compute results of SGEMP effects simulation with DPF, Nucl. Electron. Detect. Technol. 19 (1999) 47-54.
  11. T.A. Tumolillo, J.P. Wondra, MEEC-3D : a computer code for self-consistent solution of the Maxwell-Lorentz equations in three dimensions, IEEE Trans. Nucl. Sci. 24 (1977) 2449-2455. https://doi.org/10.1109/TNS.1977.4329235
  12. W.F. Crevier, M.R. Bergstrom, Three-dimension SGEMP calculations using the modified fluid approach, IEEE Trans. Nucl. Sci. 28 (1981) 4221-4422. https://doi.org/10.1109/TNS.1981.4335704
  13. Z. Xu, C. Meng, Evaluation of cable SGEMP response using Monte Carlo and finite-difference time-domain methods, IEEE Trans. Nucl. Sci. 64 (2017) 2829-2839. https://doi.org/10.1109/TNS.2017.2759189
  14. J. Chen, C. Zeng, J. Deng, Z. Li, The secondary electron collection effect of biased printed circuit board traces in box IEMPs, IEEE Trans. Nucl. Sci. 69 (2022) 143-151. https://doi.org/10.1109/TNS.2021.3139143
  15. H. Zhang, Q. Zhou, H. Zhou, et al., Particle-in-cell simulations of low-pressure air plasma generated by pulsed x erays, J. Appl. Phys. 130 (2021) 173303. https://doi.org/10.1063/5.0057841
  16. B. Goplen, et al., User-configurable MAGIC for electromagnetic PIC calculations, Comput. Phys. Commun. 87 (1995) 54-86. https://doi.org/10.1016/0010-4655(95)00010-D
  17. J.P. Verboncoeur, et al., An object-oriented electromagnetic PIC code, Comput. Phys. Commun. 87 (1995) 199-211. https://doi.org/10.1016/0010-4655(94)00173-Y
  18. J. Zhou, D. Liu, C. Liao, CHIPIC: an efficient code for electromagnetic PIC modeling and simulation, IEEE Trans. Plasma Sci. 37 (2009) 2002-2011. https://doi.org/10.1109/TPS.2009.2026477
  19. J. Wang, et al., Space charge limited current with distributed velocity of initial electrons in planar diode, Phys. Plasmas 28 (2021), 040702. https://doi.org/10.1063/5.0044346
  20. J. Chen, et al., 2D planar PIC simulation of space charge limited current with geometrical parameters, varying temporal-profile and initial velocities, IEEE Access 10 (2022) 28499. https://doi.org/10.1109/ACCESS.2022.3158747
  21. L. Cai, et al., Two-dimensional simulation research of secondary electron emission avalanche discharge on vacuum insulator surface, Phys. Plasmas 22 (2015), 013502. https://doi.org/10.1063/1.4905640
  22. J. Wang, et al., Three-dimensional parallel UNIPIC-3D code for simulations of high-power microwave devices, Phys. Plasmas 17 (2010), 073107. https://doi.org/10.1063/1.3454766
  23. J. Chen, et al., Simulation of SGEMP using particleein-cell method based on conformal technique, IEEE Trans. Nucl. Sci. 66 (2019) 820-826. https://doi.org/10.1109/TNS.2019.2911933
  24. J. Chen, J. Wang, Z. Chen, Z. Ren, Calculation of characteristic time of space charge limited effect of SGEMP, IEEE Trans. Nucl. Sci. (2020) 818-822.
  25. J. Chen et al., Study of SGEMP field-coupling inside and outside reentrant cavity, IEEE Trans. Electromagn C., doi:10.1109/TEMC.2022.3153625.
  26. J. Chen, et al., Simulation of radiation environment and IEMP irradiated by low energy fluence X ray in cylindrical cavity, At. Energy Sci. Technol. 55 (2021) 360-368.
  27. J. Yao, Y. Zhao, H. Zhang, et al., Study of similarity rules for electromagnetic process in partially ionized plasmas, Phys. Plasmas 29 (2022), 012104. https://doi.org/10.1063/5.0075980
  28. A.J. Woods, E.P. Wenaas, Scaling laws of SGEMP, IEEE Trans. Nucl. Sci. 23 (1976) 1903-1908. https://doi.org/10.1109/TNS.1976.4328597
  29. R. Stettner, The effect of various non-conducting gaps and surfaces on SGEMP and IEMP response, IEEE Trans. Nucl. Sci. 22 (1975) 2402-2407. https://doi.org/10.1109/TNS.1975.4328141
  30. H. Sun, Z. Dong, F. Zhang, Simulation analysis of external SGEMP effects of cylinder, J. Terahertz Sci. Electron. Inf. Technol. 14 (2016) 742-745.
  31. T.G. Jurgens, A. Taflove, K. Umashankar, T.G. Moore, Finite-difference timedomain modeling of curved surfaces, IEEE Trans. Antenn. Propag. 40 (1992) 357-366. https://doi.org/10.1109/8.138836
  32. D.N. Klochkov, A.N. Klochkov, Effect of the plasma electron motion on the development of Cherenkov instability in a waveguide, Plasma Phys. Rep. 28 (2002) 57-62. https://doi.org/10.1134/1.1434296
  33. J.M. McMahon, S.K. Gray, G.C. Schatz, A discrete action principle for electrodynamics and the construction of explicit symplectic integrators for linear, non-dispersive media, J. Comput. Phys. 228 (2016) 3421-3432.
  34. J. Chen, Y. Tao, S. Niu, Calculation of electron emission parameters of SGEMP in cylinder cavity irradiated by X rays, Modern Appl. Phys. 11 (2020), 010501.