DOI QR코드

DOI QR Code

On the validation of ATHLET 3-D features for the simulation of multidimensional flows in horizontal geometries under single-phase subcooled conditions

  • Diaz-Pescador, E. (Helmholtz Zentrum Dresden Rossendorf (HZDR)) ;
  • Schafer, F. (Helmholtz Zentrum Dresden Rossendorf (HZDR)) ;
  • Kliem, S. (Helmholtz Zentrum Dresden Rossendorf (HZDR))
  • Received : 2021.12.09
  • Accepted : 2022.04.23
  • Published : 2022.09.25

Abstract

This paper provides an assessment of fluid transport and mixing processes inside the primary circuit of the test facility ROCOM through the numerical simulation of Test 2.1 with the system code ATHLET. The experiment represents an asymmetric injection of cold and non-borated water into the reactor coolant system (RCS) of a pressurized water reactor (PWR) to restore core cooling, an emergency procedure which may subsequently trigger a core re-criticality. The injection takes place at low velocity under single-phase subcooled conditions and presents a major challenge for the simulation in lumped parameter codes, due to multidimensional effects in horizontal piping and vessel arising from density gradients and gravity forces. Aiming at further validating ATHLET 3-D capabilities against horizontal geometries, the experiment conditions are applied to a ROCOM model, which includes a newly developed horizontal pipe object to enhance code prediction inside coolant loops. The obtained results show code strong simulation capabilities to represent multidimensional flows. Enhanced prediction is observed at the vessel inlet compared to traditional 1-D approach, whereas mixing overprediction from the descending denser plume is observed at the upper-half downcomer region, which leads to eventual deviations at the core inlet.

Keywords

Acknowledgement

This work was funded by the German Federal Ministry for Economic Affairs and Energy(BMWi) with the grant number 1501540 on the basis of a decision by the German Bundestag. The authors would like to thank P. J. Schoffel from GRS for his support and contribution with feedback and suggestions, as well as interesting discussions related to the modelling approach.

References

  1. B.R. Sehgal, Nuclear Safety in Light Water Reactors. Severe Accident Phenomenology, Academic Press Elsevier, 2012.
  2. H. Roth-Seefrid, A. Feigel, H.J. Moser, Implementation of bleed and feed procedures in Siemens PWRs, Nucl. Eng. Des. 148 (1994) 133-150, https:// doi.org/10.1016/0029-5493(94)90105-8.
  3. BMU, EU Stresstest National Report of Germany. Implementation of the EU Stress Tests in Germany, Nature Conservation and Nuclear Safety, Federal Ministry for the Environment, 2011. http://www.ensreg.eu/sites/default/files/EU_Stress_test_national_report_Germany.pdf.
  4. AREVA GmbH, Final Report of the PKL Experimental Program within the, OECD-PKL3 Project, 2016.
  5. K. Umminger, L. Dennhardt, S. Schollenberger, B. Schoen, Integral test facility PKL: experimental PWR accident investigation, Sci. Technol. Nucl. Install. (2012), https://doi.org/10.1155/2012/891056, 2012.
  6. U. Rohde, S. Kliem, T. Hohne, R. Karlsson, B. Hemstrom, J. Lillington, T. Toppila, J. Elter, Y. Bezrukov, Fluid mixing and flow distribution in the reactor circuit, measurement data base, Nucl. Eng. Des. 235 (2005) 421-443, https://doi.org/10.1016/j.nucengdes.2004.08.045.
  7. M. Jobst, P. Wilhelm, Y. Kozmenkov, S. Kliem, Severe accident management measures for a generic German PWR . Part II : small-break loss-of-coolant accident, Ann. Nucl. Energy 122 (2018) 280-296, https://doi.org/10.1016/j.anucene.2018.08.017.
  8. P. Wilhelm, M. Jobst, Y. Kozmenkov, F. Schafer, S. Kliem, Severe accident management measures for a generic German PWR . Part I : Station blackout, Ann. Nucl. Energy 122 (2018) 217-228, https://doi.org/10.1016/j.anucene.2018.08.016.
  9. S. Kliem, R. Franz, OECD PKL3 Project e Final Report on the ROCOM Tests, Institute Report HZDR\FWO\2016\01, 2016.
  10. F. D'Auria, Thermal Hydraulics in Water-Cooled Nuclear Reactors, Woodhead Publishing, 2017.
  11. A. Bousbia Salah, J. Vlassenbroeck, Assessment of the CATHARE 3D capabilities in predicting the temperature mixing under asymmetric buoyant driven flow conditions, Nucl. Eng. Des. 265 (2013) 469-483, https://doi.org/10.1016/j.nucengdes.2013.09.016.
  12. A. Bousbia Salah, S.C. Ceuca, R. Puragliesi, R. Mukin, A. Grahn, S. Kliem, J. Vlassenbroeck, H. Austregesilo, Unsteady single-phase natural-circulation flow mixing prediction using 3-D thermal-hydraulic system and CFD codes, Nucl. Technol. 203 (2018) 293-314, https://doi.org/10.1080/00295450.2018.1461517.
  13. T. Glantz, R. Freitas, Validation of CATHARE 3D code against UPTF TRAM C3 transients, J. Electr. Power Energy Syst. 2 (2008) 397-408, https://doi.org/10.1299/jpes.2.397.
  14. J. Freixa, F. Reventos, C. Pretel, L. Batet, I. Sol, SBLOCA with boron dilution in pressurized water reactors. Impact on operation and safety, Nucl. Eng. Des. 239 (2009) 749-760, https://doi.org/10.1016/j.nucengdes.2009.01.004.
  15. S. Kliem, Y. Kozmenkov, J. Hadek, Y. Perin, F. Fouquet, F. Bernard, A. Sargeni, D. Cuervo, A. Sabater, S. Sanchez-cervera, N. Garcia-herranz, O. Zerkak, H. Ferroukhi, P. Mala, Testing the NURESIM platform on a PWR main steam line break benchmark, Nucl. Eng. Des. 321 (2017) 8-25, https://doi.org/10.1016/j.nucengdes.2017.05.028.
  16. C. Demaziere, V.H. Sanchez-Espinoza, B. Chanaron, Advanced numerical simulation and modelling for reactor safety contributions from the CORTEX, HPMC, McSAFE and NURESAFE projects, EPJ Nucl. Sci. Technol. 6 (2020) 42, https://doi.org/10.1051/epjn/2019006.
  17. V.H. Sanchez-Espinoza, S. Gabriel, H. Suikkanen, J. Telkka, V. Valtavirta, M. Bencik, S. Kliem, C. Queral, A. Farda, F. Abeguil e, P. Smith, P. Van Uffelen, L. Ammirabile, M. Seidl, C. Schneidesch, D. Grishchenko, H. Lestani, The h2020 mcsafer project: main goals, technical work program, and status, Energies 14 (2021), https://doi.org/10.3390/en14196348.
  18. E. Diaz-Pescador, A. Grahn, S. Kliem, F. Schafer, T. Hohne, Advanced modelling of complex boron dilution transients in PWRs e validation of ATHLET 3DModule against the experiment ROCOM E2 . 3, Nucl. Eng. Des. 367 (2020), 110776, https://doi.org/10.1016/j.nucengdes.2020.110776.
  19. A. Grahn, E. Diaz Pescador, S. Kliem, F. Schafer, T. Hohne, Modelling of complex boron dilution transients in PWRs d validation of CFD simulation with ANSYS CFX against the ROCOM E2 . 3 experiment, Nucl. Eng. Des. 372 (2021), 110938, https://doi.org/10.1016/j.nucengdes.2020.110938.
  20. E. Diaz-Pescador, F. Schafer, S. Kliem, Modelling of multidimensional effects in thermal-hydraulic system codes under asymmetric flow conditions e simulation of ROCOM tests 1.1 and 2.1 with ATHLET 3D-Module, Nucl. Eng. Technol. 53 (2021) 3182-3195, https://doi.org/10.1016/j.net.2021.04.015.
  21. S. Kliem, H.M. Prasser, T. Suhnel, F.P. Weiss, A. Hansen, Experimental determination of the boron concentration distribution in the primary circuit of a PWR after a postulated cold leg small break loss-of-coolant-accident with cold leg safety injection, Nucl. Eng. Des. 238 (2008) 1788-1801, https://doi.org/10.1016/j.nucengdes.2007.10.016.
  22. G. Lerchl, H. Austregesilo, A. Langenfeld, P.J. Schoffel, D. von der Cron, F. Weyermann, ATHLET 3.2 user's manual. GRS-P-1/Vol. 1, Rev. 8 (2019).
  23. A. Wielenberg, L. Lovasz, P. Pandazis, A. Papukchiev, L. Tiborcz, P.J. Schoffel, C. Spengler, M. Sonnenkalb, A. Schaffrath, Recent improvements in the system code package AC2 2019 for the safety analysis of nuclear reactors, Nucl. Eng. Des. 354 (2019), 110211, https://doi.org/10.1016/j.nucengdes.2019.110211.