DOI QR코드

DOI QR Code

Radiation shielding properties of weathered soils: Influence of the chemical composition and granulometric fractions

  • Pires, Luiz F. (Laboratory of Physics Applied to Soils and Environmental Sciences, Department of Physics, State University of Ponta Grossa)
  • Received : 2021.11.05
  • Accepted : 2022.04.02
  • Published : 2022.09.25

Abstract

Soils are porous materials with high shielding capability to attenuate gamma and X-rays. The disposal of radionuclides throughout the soil profile can expose the living organisms to ionizing radiation. Thus, studies aiming to analyze the shielding properties of the soils are of particular interest for radiation shielding. Investigations on evaluating the shielding capabilities of highly weathered soils are still scarce, meaning that additional research is necessary to check their efficiency to attenuate radiation. In this study, the radiation shielding properties of contrasting soils were evaluated. The radiation interaction parameters assessed were attenuation coefficients, mean free path, and half- and tenth-value layers. At low photon energies, the photoelectric absorption contribution to the attenuation coefficient predominated, while at intermediate and high photon energies, the incoherent scattering and pair production were the dominant effects. Soils with the highest densities presented the best shielding properties, regardless of their chemical compositions. Increases in the attenuation coefficient and decreases in shielding parameters of the soils were associated with increases in clay, Fe2O3, Al2O3, and TiO2 amounts. In addition, this paper provides a comprehensive description of the shielding properties of weathered soils showing the importance of their granulometric fractions and oxides to the attenuation of the radiation.

Keywords

Acknowledgement

Luiz F. Pires would like to acknowledge the financial support provided by the Brazilian National Council for Scientific and Technological Development (CNPq) through Grant 304925/2019-5 (Productivity in Research).

References

  1. A.H. Al-khawlany, A.R. Khan, J.M. Pathan, Investigation of radiation shielding properties for some soil samples for use in shields against gamma-rays from different nuclides, Bull. Pure Ap. Sci. 38 (2019) 32-45. https://doi.org/10.5958/2320-3218.2019.00006.X
  2. S.V. Mamikhin, D.V. Manakhov, A.I. Shcheglov, E.V. Tsvetnov, Some aspects of evaluation of the role of soils as a shielding medium from ionizing-radiation, Moscow Univ. Soil Sci. Bull. 72 (2017) 66-70. https://doi.org/10.3103/S0147687417020053
  3. S. Gedik, A.F. Baytas, Shielding of gamma radiation by using porous materials, Acta Phys. Pol. 128 (2015) 174-175.
  4. J. Miller, L. Taylor, C. Zeitlin, L. Heilbronn, S. Guetersloh, M. DiGiuseppe, Y. Iwata, T. Murakami, Lunar soil as shielding against space radiation, Radiat. Meas. 44 (2009) 163-167. https://doi.org/10.1016/j.radmeas.2009.01.010
  5. E. Yoshikawa, H. Komine, S. Goto, Y. Saito, The evaluation for radiation shielding ability of the soil materials and application to design for construction, in: Proceedings of the 19th International Conference on Soil Mechanics and Geotechnical Engineering, Seoul, 2017.
  6. V.P. Singh, N.M. Badiger, N. Kucuk, Gamma-ray and neutron shielding properties of some soil samples, Indian J. Pure Appl. Phys. 52 (2014) 579-587.
  7. F.C. Hila, G.P. Dicen, A.M.V. Javier-Hila, A. Asuncion-Astronomo, N.R.D. Guillermo, R.V. Rallos, I.A. Navarrete, A.V. Amorsolo Jr., Determination of photon shielding parameters for soils in Mangrove Forests, Philipp. J. Sci. 150 (2021) 245-256.
  8. A.C. Scheinost, Metal Oxides, Encyclopedia of Soils in the Environment, Elsevier, Amsterdam, 2005.
  9. D. Hillel, Environmental Soil Physics, first ed., Academic Press, San Diego, 1998.
  10. T.R. Ferreira, L.F. Pires, A.M. Brinatti, A.C. Auler, Surface liming effects on soil radiation attenuation properties, J. Soils Sediments 18 (2018) 1641-1653. https://doi.org/10.1007/s11368-017-1866-2
  11. I.M. Nikbin, R. Mohebbi, S. Dezhampanah, S. Mehdipour, R. Mohammadi, T. Nejat, Gamma ray shielding properties of heavy-weight concrete containing Nano-TiO2, Radiat. Phys. Chem. 162 (2019) 157-167. https://doi.org/10.1016/j.radphyschem.2019.05.008
  12. G.W. Gee, J.W. Bauder, Particle-size analysis, in: A. Klute (Ed.), Methods of Soil Analysis, Part I. Physical and Mineralogical Methods, SSSA Book Series, Madison, 1986, pp. 381-411.
  13. M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, D.S. Zucker, K. Olsen, XCOM: Photon Cross Section Database (Version 1.5), National Institute of Standards and Technology, Gaithersburg, MD, 2010 (Online) Available: http://physics.nist.gov/xcom.
  14. M.E. Medhat, L.F. Pires, R.C.J. Arthur, Analysis of photon interaction parameters as function of soil composition, J. Radioanal. Nucl. Chem. 300 (2014) 1105-1112. https://doi.org/10.1007/s10967-014-3028-y
  15. A.L. Conner, H.F. Atwater, E.H. Plassmann, J.H. McCrary, Gamma-ray attenuation-coefficient measurements, Phys. Rev. 1 (1970) 539-544. https://doi.org/10.1103/PhysRevA.1.539
  16. Embrapa, Manual de metodos de an alise do solo, 2a edicao, Centro Nacional de Pesquisa de Solos, Rio de Janeiro, 1997.
  17. O. Hammer, D.A.T. Harper, P.D. Ryan, PAST: paleontological statistics software package for education and data analysis, Paleontol. Electron. 4 (2001) 1-9.
  18. M.S. Al-Masri, M. Hasan, A. Al-Hamwi, Y. Amin, A.W. Doubal, Mass attenuation coefficients of soil and sediment samples using gamma energies from 46.5 to 1332 keV, J. Environ. Radioact. 116 (2013) 28-33. https://doi.org/10.1016/j.jenvrad.2012.09.008
  19. I. Kaplan, Nuclear Physics, first ed., Addison-Wesley Publishing Company, Cambridge, 1963.
  20. T.A. Almeida Junior, M.S. Nogueira, V. Vivolo, M.P.A. Potiens, L.L. Campos, Mass attenuation coefficients of X-rays in different barite concrete used in radiation protection as shielding against ionizing radiation, Radiat. Phys. Chem. 140 (2017) 349-354. https://doi.org/10.1016/j.radphyschem.2017.02.054
  21. E.S.B. Ferraz, R.S. Mansell, Determining Water Content and Bulk Density of Soil by Gamma-Ray Attenuation Methods, IFAS, Florida, 1979, p. 51. Technical Bulletin, No. 807.
  22. L.F. Pires, Soil analysis by nuclear techniques: a literature review of the gamma ray attenuation method, Soil Till. Res. 184 (2018) 216-234. https://doi.org/10.1016/j.still.2018.07.015
  23. N. Kucuk, Z. Tumsavas, M. Cakir, Determining photon energy absorption parameters for different soil samples, J. Radiat. Res. 54 (2013) 578-586. https://doi.org/10.1093/jrr/rrs109
  24. X.-D. Su, G.-L. Zhang, S.-P. Xu, W.-W. Qu, Y.-H. Huang, B. Wang, Y.-F. Wang, Z.-T. Zhang, W.-F. Xu, M.-L. Wang, Attenuation coefficients of gamma and X-rays passing through six materials, Nucl. Sci. Tech. 31 (2020) 3. https://doi.org/10.1007/s41365-019-0717-9
  25. F.C. Hila, A.M.V. Javier-Hila, M.I. Sayyed, A. Asuncion-Astronomo, G.P. Dicen, J.F.M. Jecong, N.R.D. Guillermo, A.V. Amorsolo Jr., Evaluation of photon radiation attenuation and buildup factors for energy absorption and exposure in some soils using EPICS2017 library, Nucl. Eng. Technol. 53 (2021) 3808-3815. https://doi.org/10.1016/j.net.2021.05.030
  26. C.R. Appoloni, E.A. Rios, Mass attenuation coefficients of Brazilian soils in the range 10-1450 keV, Appl. Radiat. Isot. 45 (1994) 287-291. https://doi.org/10.1016/0969-8043(94)90041-8
  27. M.E. Medhat, Application of gamma-ray transmission method for study the properties of cultivated soil, Ann. Nucl. Energy 40 (2012) 53-59. https://doi.org/10.1016/j.anucene.2011.10.010
  28. W. Chesworth, Soil Mineralogy, first ed., Springer, Dordrecht, 2008.
  29. L.V. Prandel, N.M.P. Dias, S.C. Saab, A.M. Brinatti, N.F.B. Giarola, L.F. Pires, Characterization of kaolinite in the hardsetting clay fraction using atomic force microscopy, X-ray diffraction, and the Rietveld method, J. Soils Sediments 17 (2017) 2144-2155. https://doi.org/10.1007/s11368-017-1654-z
  30. Y. Elmahroug, B. Tellili, C. Souga, Determination of total mass attenuation coefficients, effective atomic numbers and electron densities for different shielding materials, Ann. Nucl. Energy 75 (2015) 268-274. https://doi.org/10.1016/j.anucene.2014.08.015
  31. N. Jamal AbuAlRoos, M.N. Azman, N.A.B. Amin, R. Zainon, Tungsten-based material as promising new lead-free gamma radiation shielding material in nuclear medicine, Phys. Med. 78 (2020) 48-57. https://doi.org/10.1016/j.ejmp.2020.08.017
  32. A. un, D. Demir, Y. Sahin, Determination of density and volumetric water content of soil at multiple photon energies, Radiat. Phys. Chem. 80 (2011) 863-868. https://doi.org/10.1016/j.radphyschem.2011.03.018
  33. J.C. Costa, J.A.R. Borges, L.F. Pires, Soil bulk density evaluated by gamma-ray attenuation: analysis of system geometry, Soil Till. Res. 129 (2014) 23-31.
  34. V.N. Ba, B.N. Thien, T.T.H. Loan, Effects of element composition in soil samples on the efficiencies of gamma energy peaks evaluated by the MCNP5 code, Nucl. Eng. Technol. 53 (2021) 337-343. https://doi.org/10.1016/j.net.2020.06.013