DOI QR코드

DOI QR Code

Position-independent wireless power transfer system delivering constant power

  • Zeng, Wei (School of Electric Power, South China University of Technology) ;
  • Du, Guiping (School of Electric Power, South China University of Technology) ;
  • Zhou, Runtang (School of Electric Power, South China University of Technology) ;
  • Yang, Zijiang (School of Electric Power, South China University of Technology)
  • Received : 2022.01.13
  • Accepted : 2022.05.26
  • Published : 2022.10.20

Abstract

A single-stage wireless power transfer (WPT) system based on the switching control capacitor (SCC) is proposed in this paper. Using the SCC instead of an ordinary capacitor gives the WPT system, an additional control degree of freedom. The proposed robust WPT system has a constant power (CP) output characteristic under a wide range of load resistance and coupling coefficient variations by adjusting the conduction angle of the SCC. When compared with constant current (CC) charging, CP charging can shorten the charging time and promote battery cycle life. Moreover, a primary side control method is proposed. It only needs to sample the primary current to identify the reflected impedance, which avoids wireless communication. When combined with the control strategy, the condition of zero-voltage switching (ZVS) is derived. Finally, a 125-W experimental prototype is built to verify the performance of the proposed method. Experimental results demonstrate that stable CP charging can be maintained during coil movement and load changes. In addition, soft switching is implemented in all situations.

Keywords

Acknowledgement

Acknowledgments this work was supported by the Guangdong Provincial Natural Science Research Team Project: New Energy Efficient Electrical Energy Conversion, 2017B030312001.

References

  1. Li, X., Zhang, Y., Chen, S., Zhang, X., Tang, Y.: Coil relative position transient issue in wireless power transfer systems. IEEE Trans. Ind. Electron. 69(3), 2621-2630 (2022) https://doi.org/10.1109/TIE.2021.3070516
  2. Li, G., Ma, H.: A hybrid IPT system with high-misalignment tolerance and inherent CC-CV output characteristics for EVs charging applications. Emerg. Sel. Topics Power Electron, IEEE J (2021). https:// doi. org/ 10. 1109/ JESTPE. 2021. 31129 69 https://doi.org/10.1109/JESTPE.2021.3112969
  3. Zhang, Y., Yan, Z., Liang, Z., Li, S., Mi, C.C.: A high-power wireless charging system using LCL-N topology to achieve a compact and low-cost receiver. IEEE Trans. Power Electron. 35(1), 131-137 (2020) https://doi.org/10.1109/TPEL.2019.2914363
  4. Zhang, Z., Shen, S., Liang, Z., Eder, S.H.K., Kennel, R.: Dynamic-balancing robust current control for wireless drone-inflight charging. IEEE Trans. Power Electron. 37(3), 3626-3635 (2022) https://doi.org/10.1109/TPEL.2021.3111755
  5. Zhang, Z., Pang, H., Georgiadis, A., Cecati, C.: Wireless power transfer-an overview. IEEE Trans. Ind. Electron. 66(3), 1044-1058 (2019) https://doi.org/10.1109/TIE.2018.2835378
  6. Wang, Y., Mai, J., Yao, Y., Xu, D.: Analysis and design of an IPT system based on S/SP compensation with improved output voltage regulation. IEEE Trans. Ind. Electron. Inform. 16(5), 3256-3266 (2020) https://doi.org/10.1109/TII.2019.2952918
  7. Feng, H., Dayerizadeh, A., Lukic, S.M.: A coupling-insensitive X-type IPT system for high position tolerance. IEEE Trans. Ind. Electron. 68(8), 6917-6926 (2021) https://doi.org/10.1109/TIE.2020.3000116
  8. Mai, J., Wang, Y., Yao, Y., Xu, D.: Analysis and design of highmisalignment- tolerant compensation topologies with constantcurrent or constant-voltage output for IPT systems. IEEE Trans. Power Electron. 36(3), 2685-2695 (2021) https://doi.org/10.1109/TPEL.2020.3014687
  9. Qu, X., Yao, Y., Wang, D., Wong, S.-C., Tse, C.K.: A family of hybrid IPT topologies with near load-independent output and high tolerance to pad misalignment. IEEE Trans. Power Electron. 35(7), 6867-6877 (2020) https://doi.org/10.1109/TPEL.2019.2955299
  10. Xu, L., Chen, Q., Ren, X., Wong, S., Tse, C.K.: Self-oscillating resonant converter with contactless power transfer and integrated current sensing transformer. IEEE Trans. Power Electron. 32(6), 4839-4851 (2017) https://doi.org/10.1109/TPEL.2016.2598556
  11. Song, K., Li, Z., Jiang, J., Zhu, C.: Constant current/voltage charging operation for series-series and series-parallel compensated wireless power transfer systems employing primaryside controller. IEEE Trans. Power Electron. 33(9), 8065-8080 (2018)
  12. Iam, C.I., et al.: Constant-frequency and non-communicationbased inductive power transfer converter for battery charging. Emerg. Sel. Topics Power Electron, IEEE J (2020). https://doi.org/10.1109/ESTPE. 2020.3004259
  13. Wu, L., Zhang, B., Jiang, Y.: Position-independent CC/CV wireless EV charging system without dual-side communication and DC-DC converter. IEEE Trans. Ind. Electron. (2021). https://doi.org/10.1109/TIE. 2021.3108702
  14. Fu, N., Deng, J., Wang, Z., Wang, W., Wang, S.: A hybrid mode control strategy for LCC-LCC- compensated WPT system with wide ZVS operation. IEEE Trans. Power Electron. 37(2), 2449-2460 (2022) https://doi.org/10.1109/TPEL.2021.3108637
  15. Zhang, X., et al.: A control strategy for efficiency optimization and wide ZVS operation range in bidirectional inductive power transfer system. IEEE Trans. Ind. Electron. 66(8), 5958-5969 (2019) https://doi.org/10.1109/TIE.2018.2871794
  16. Dai, X., Li, X., Li, Y., Hu, A.P.: Maximum efficiency tracking for wireless power transfer systems with dynamic coupling coefficient estimation. IEEE Trans. Power Electron. 33(6), 5005-5015 (2018) https://doi.org/10.1109/TPEL.2017.2729083
  17. Luo, J., et al.: Novel Cuk-based bridgeless rectifier of wireless power transfer system with wide power modulation range and low current ripple. IEEE Trans. Ind. Electron. 69(3), 2533-2544 (2022) https://doi.org/10.1109/TIE.2021.3066927
  18. Kim, M., Joo, D.-M., Lee, B.K.: Design and control of inductive power transfer system for electric vehicles considering wide variation of output voltage and coupling coefficient. IEEE Trans. Power Electron. 34(2), 1197-1208 (2019) https://doi.org/10.1109/TPEL.2018.2835161
  19. Zhang, K., Gao, W., Shi, R., Yan, Z., Song, B., Hu, A.P.: An impedance matching network tuning method for constant current output under mutual inductance and load variation of IPT system. IEEE Trans. Power Electron. 35(10), 11108-11118 (2020) https://doi.org/10.1109/TPEL.2020.2978104
  20. Kim, D., Ahn, D.: Self-tuning LCC inverter using PWM-controlled switched capacitor for inductive wireless power transfer. IEEE Trans. Ind. Electron. 66(5), 3983-3992 (2019) https://doi.org/10.1109/TIE.2018.2844796
  21. Li, W., Wei, G., Cui, C., Zhang, X., Zhang, Q.: A double-side self-tuning LCC/S system using a variable switched capacitor based on parameter recognition. IEEE Trans. Ind. Electron. 68(4), 3069-3078 (2021) https://doi.org/10.1109/TIE.2020.2978726
  22. Li, W., Zhang, Q., Cui, C., Wei, G.: A self-tuning S/S compensation WPT system without parameter recognition. IEEE Trans. Ind. Electron. (2021). https://doi.org/10.1109/TIE.2021.3099250
  23. Wong, C.S., Wong, M.-C., Cao, L., Loo, K.H.: Design of highefficiency inductive charging system with load-independent output voltage and current tolerant of varying coupling condition. IEEE Trans. Power Electron. 36(12), 13546-13561 (2021) https://doi.org/10.1109/TPEL.2021.3086858
  24. Huang, Z., Lam, C.-S., Mak, P.-I., da Martins, R.P.S., Wong, S.-C., Tse, C.K.: A single-stage inductive-power-transfer converter for constant-power and maximum-efficiency battery charging. IEEE Trans. Power Electron. 35(9), 8973-8984 (2020) https://doi.org/10.1109/TPEL.2020.2969685
  25. Xu, F., Wong, S.-C., Tse, C.K.: Overall loss compensation and optimization control in single-stage inductive power transfer converter delivering constant power. IEEE Trans. Power Electron. 37(1), 1146-1158 (2022) https://doi.org/10.1109/TPEL.2021.3098914