DOI QR코드

DOI QR Code

그래핀 옥사이드 혼입 고강도 시멘트 모르타르의 Interfacial Transition Zone (ITZ) 특성에 관한 연구

Investigation on the Characteristics of Interfacial Transition Zone (ITZ) of High-Strength Cement Mortar Incorporating Graphene Oxide

  • 임수민 (한양대학교 건축공학과) ;
  • 조성민 (한양대학교 건축공학과) ;
  • 유준성 (한양대학교 건축공학과) ;
  • 임승민 (강원대학교 건축학과) ;
  • 배성철 (한양대학교 건축공학과)
  • Im, Su-Min (Department of Architectural Engineering, Hanyang University) ;
  • Cho, Seong-Min (Department of Architectural Engineering, Hanyang University) ;
  • Liu, Jun-Xing (Department of Architectural Engineering, Hanyang University) ;
  • Lim, Seungmin (Department of Architecture, Kangwon National University) ;
  • Bae, Sung-Chul (Department of Architectural Engineering, Hanyang University)
  • 투고 : 2022.09.19
  • 심사 : 2022.09.27
  • 발행 : 2022.09.30

초록

최근 취성재료인 콘크리트의 강도 발현에 가장 불리하게 작용하는 영역인 골재와 시멘트 복합체 사이 Interfacial transition zone (ITZ) 성능 개선을 위해 나노 실리카, 탄소나노튜브, 그래핀 옥사이드(GO) 등 나노물질을 활용한 방안이 제시되고 있다. 나노물질 중에서 우수한 분산성을 가진 GO는 ITZ 영역에 높은 비율로 존재하는 Ca2+과 화학적 결합을 형성하여 일반강도 콘크리트 내 ITZ 성능 개선에 효과적인 것으로 보고되었다. 본 연구에서 미소수화열 분석 및 Scanning electron microscope 이미지 분석 기법을 활용하여 도출한 GO 혼입에 따른 수화 발열량 변화와 ITZ의 두께 변화 및 표준사 주변 공극 분포 변화를 통해 GO가 고강도 시멘트 모르타르 내 ITZ 특성에 미치는 영향을 조사하였다.

In recent years, nanomaterials, such as nano-silica, carbon nanotubes, and graphene oxide (GO), have been suggested to improve the properties of the interfacial transition zone (ITZ) between aggregates and cement pastes, which has most adversely affected the strength of quasi-brittle concrete. Among the nanomaterials, GO with superior dispersibility has been reported to be effective in improving the properties of ITZ of normal-strength concrete by forming interfacial chemical bonds with Ca2+ ions abundant in ITZ. In this study, the effect of GO on the properties of ITZ in the high-strength mortar was elucidated by calculating the change in hydration heat release, ITZ thickness, and the porosity around ISO sand, which was obtained with isothermal calorimetry tests and scanning electron microscope image analysis, respectively.

키워드

과제정보

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음 (과제번호 22NANO-B156177-03).

참고문헌

  1. Alexander, M.G. (1999). Engineering and Transport Properties of the Interfacial Transition Zone in Cementitious Composites, 20, Rilem Publications.
  2. Amini, K., Amiri, S.S., Ghasemi, A., Mirvalad, S., Korayem, A. H. (2021). Evaluation of the dispersion of metakaolin-graphene oxide hybrid in water and cement pore solution: can metakaolin really improve the dispersion of graphene oxide in the calcium-rich environment of hydrating cement matrix?, RSC Advances, 11(30), 18623-18636. https://doi.org/10.1039/D1RA01504D
  3. ASTM C (2016). 109/C 109M-02. Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or (50-mm) Cube Specimens), Annual Book of ASTM Standards, 4.
  4. ASTM C (2018). 348/C 348M-18, Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars, West Conshohocken, PA.
  5. G.W., Schweitzer, J.S., Scrivener, K.L., Thomas, J.J. (2011). Mechanisms of cement hydration, Cement and Concrete Research, 41(12), 1208-1223. https://doi.org/10.1016/j.cemconres.2010.09.011
  6. Chen, Y., Li, X., Dong, B., Du, H., Yan, R., Wang, L. (2022). High-temperature properties of cement paste with graphene oxide agglomerates, Construction and Building Materials, 320, 126286. https://doi.org/10.1016/j.conbuildmat.2021.126286
  7. Duan, P., Shui, Z., Chen, W., Shen, C. (2013). Effects of metakaolin, silica fume and slag on pore structure, interfacial transition zone and compressive strength of concrete, Construction and Building Materials, 44, 1-6. https://doi.org/10.1016/j.conbuildmat.2013.02.075
  8. Gao, Y., De Schutter, G., Ye, G., Huang, H., Tan, Z., Wu, K. (2013). Porosity characterization of ITZ in cementitious composites: concentric expansion and overflow criterion, Construction and Building Materials, 38, 1051-1057. https://doi.org/10.1016/j.conbuildmat.2012.09.047
  9. Gao, Y., Zhu, X., Corr, D.J., Konsta-Gdoutos, M.S., Shah, S.P. (2019). Characterization of the interfacial transition zone of CNF-reinforced cementitious composites, Cement and Concrete Composites, 99, 130-139. https://doi.org/10.1016/j.cemconcomp.2019.03.002
  10. Karpova, E., Skripkiunas, G., Barauskas, I., Barauskiene, I., Hodul, J. (2021). Influence of carbon nanotubes and polycarboxylate superplasticiser on the Portland cement hydration process, Construction and Building Materials, 304, 124648. https://doi.org/10.1016/j.conbuildmat.2021.124648
  11. Li, X., Lu, Z., Chuah, S., Li, W., Liu, Y., Duan, W.H., Li, Z. (2017). Effects of graphene oxide aggregates on hydration degree, sorptivity, and tensile splitting strength of cement paste, Composites Part A: Applied Science and Manufacturing, 100, 1-8. https://doi.org/10.1016/j.compositesa.2017.05.002
  12. Li, Y., Li, Y., Wang, R. (2019). Quantitative evaluation of elastic modulus of concrete with nanoidentation and homogenization method, Construction and Building Materials, 212, 295-303. https://doi.org/10.1016/j.conbuildmat.2019.04.002
  13. Meng, S., Ouyang, X., Fu, J., Niu, Y., Ma, Y. (2021). The role of graphene/graphene oxide in cement hydration, Nanotechnology Reviews, 10(1), 768-778. https://doi.org/10.1515/ntrev-2021-0055
  14. Nguyen, H.D., Zhang, Q., Sagoe-Crentsil, K., Duan, W. (2021). Graphene oxide-coated sand for improving performance of cement composites, Cement and Concrete Composites, 124, 104279. https://doi.org/10.1016/j.cemconcomp.2021.104279
  15. Sharma, S., Kothiyal, N.C. (2015). Influence of graphene oxide as dispersed phase in cement mortar matrix in defining the crystal patterns of cement hydrates and its effect on mechanical, microstructural and crystallization properties. RSC Advances, 5(65), 52642-52657. https://doi.org/10.1039/C5RA08078A
  16. Sikora, P., Abd Elrahman, M., Stephan, D. (2018). The influence of nanomaterials on the thermal resistance of cement-based composites-a review, Nanomaterials, 8(7), 465. https://doi.org/10.3390/nano8070465
  17. Wong, H.S., Head, M.K., Buenfeld, N.R. (2006). Pore segmentation of cement-based materials from backscattered electron images, Cement and Concrete Research, 36(6), 1083-1090. https://doi.org/10.1016/j.cemconres.2005.10.006
  18. Xuan, D.X., Shui, Z.H., Wu, S.P. (2009). Influence of silica fume on the interfacial bond between aggregate and matrix in near-surface layer of concrete, Construction and Building Materials, 23(7), 2631-2635. https://doi.org/10.1016/j.conbuildmat.2009.01.006
  19. Yan, X., Zheng, D., Yang, H., Cui, H., Monasterio, M., Lo, Y. (2020). Study of optimizing graphene oxide dispersion and properties of the resulting cement mortars, Construction and Building Materials, 257, 119477. https://doi.org/10.1016/j.conbuildmat.2020.119477
  20. Yu, L., Bai, S., Guan, X. (2022). Graphene oxide-silica nanocomposites reinforced mortars: Mechanical properties, permeability and microstructure, Construction and Building Materials, 344, 128290. https://doi.org/10.1016/j.conbuildmat.2022.128290
  21. Zhao, L., Guo, X., Liu, Y., Ge, C., Guo, L., Shu, X., Liu, J. (2017). Synergistic effects of silica nanoparticles/polycarboxylate superplasticizer modified graphene oxide on mechanical behavior and hydration process of cement composites, RSC Advances, 7(27), 16688-16702. https://doi.org/10.1039/C7RA01716B