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Introduction 

In the field of preimplantation genetic testing for aneuploidy 
(PGT-A), mosaicism was first identified 25 years ago in a validation 
study, where it was thought to be caused by an insufficient trophec-
toderm (TE) sample size [1]. Technological innovations, such as 
next-generation sequencing (NGS), have significantly improved the 
identification and quantification of mosaicism. Some authors recent-
ly proposed that an “intermediate copy number” of individual chro-
mosomes is a more accurate term than mosaicism [2]. 

Mosaic embryos have the potential to implant and develop into 
genetically normal babies [3,4]. Greco et al. [5] first reported in 2015 
that 18 women who had mosaic embryo transfers gave birth to six 
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As the resolution and accuracy of diagnostic techniques for preimplantation genetic testing for aneuploidy (PGT-A) are improving, more mo-
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bryo transfer. We present an updated review of clinical outcomes and practice recommendations for the transfer of mosaic embryos using 
PGT-A. 
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healthy euploid newborns. In a recent prospective study, the authors 
demonstrated that mosaic embryos had a similar implantation rate 
(55% vs. 55.8%, p = 0.86) and live birth rate (43.4% vs. 42.9%, 
p = 0.82), as well as equivalent developmental potential to that of 
euploid embryos [6]. In addition, multicenter studies found no signif-
icant differences between euploid and mosaic embryo transfers in 
terms of the preterm delivery rate, birth weight, or risk of congenital 
malformations [3,7,8]. 

However, arguments for and against transferring mosaic embryos 
still exist [9]. The International Do No Harm Group in in vitro fertiliza-
tion (IVF) argued against the 2019 Preimplantation Genetic Diagno-
sis International Society (PGDIS) guideline for mosaic embryo trans-
fer [10] on the basis that the interpretation of mosaicism in PGT-A 
was misleading [9,11]. On the contrary, a recently published pro-
spective non-selection study reported that the risk of clinical error in 
the diagnosis of uniform aneuploidy by NGS-based PGT-A was ex-
ceedingly low (0%–2%), suggesting that PGT-A has high predictive 
power [12]. Given the variability in the management of mosaic em-
bryos, it is important for clinicians to have informative genetic coun-
seling resources available when informing their patients of PGT-A re-
sults and giving recommendations for mosaic embryo transfer. 
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Therefore, we aimed to provide the latest clinical outcomes following 
mosaic embryo transfers in PGT-A cycles and a summary of updated 
practice recommendations. 

Definition and types of mosaicism 

Mosaicism is the presence of more than one genotypically distinct 
cell population within a single zygote [13]. Mosaic cellular popula-
tions are thought to arise from post-zygotic mitotic errors during 
post-zygotic cell division [13]. In PGT-A, mosaicism is defined as a 
mixture of 20% to 80% aneuploid and euploid DNA content; those 
with less than 20% aneuploid DNA are called euploid, and those 
with more than 80% aneuploid DNA are called aneuploid. [14]. The 
incidence of mosaic embryos has been reported to be 5%, but some 
have found rates of 20%–30% using PGT-A [15]. Mosaicism is more 
frequently found in cleavage-stage embryos (30%–70%) [16] com-
pared with blastocyst-stage embryos (5%–15%) [17,18]. 

Mosaicism can be classified into four types based on cell lineage 
and the timing of mitotic errors in the blastocyst stage [19,20]. An 
embryo is defined as “total mosaic” when both the inner cell mass 
(ICM) and TE contain aneuploid and euploid cells. If the mosaic pop-
ulation is exclusively ICM, the embryo is defined as “ICM mosaic,” and 
if exclusively TE, the embryo is “TE mosaic.” Finally, if all cells in the 
ICM are aneuploid and all cells in the TE are euploid (or vice versa), 
the embryo is “ICM/TE mosaic”. 

Factors contributing to the diagnosis of 
mosaicism 

Mosaicism may not be associated with maternal age [21]. Some 
authors suggested a slight increase in mosaicism in younger patients 
compared to women over 37 years of age [22]. In cases of low-de-
gree mosaicism and segmental aneuploidies, the incidence of mosa-
icism showed a negative correlation with maternal age [23,24]. Con-
trary to the effects of maternal age, ovarian response to stimulation 
was positively related to the occurrence of segmental aneuploidy. In 
one study, the oocyte vitrification and ovarian response showed no 
effect on the mosaicism rate [22]. 

A high proportion of mosaic embryos was found in couples with 
low sperm concentrations [25,26]. The prevalence of mosaic and 
chaotic aneuploidy in blastomeres ranges from 35% to 68% in oligo-
zoospermic and azoospermic men [27,28]. There is a higher propor-
tion of mosaic embryos in PGT-A cycles with male infertility com-
pared to patients with normal sperm parameters. The highest mosa-
icism rates were related to the severity of male infertility [25,26]. 

Technical laboratory factors may affect the quality of a biopsy and 
thus may affect the occurrence of mosaicism within the TE. The dif-

ferences in platform specificity and sensitivity, the protocols for DNA 
amplification, and the threshold settings established for interpreta-
tion can lead to differences in the proportion of mosaicism and the 
number of euploid embryos to transfer [29]. Other factors associated 
with the biopsy technique, including the conditions surrounding cell 
loading and the number of cells biopsied, can also affect the results 
[30]. The method of fertilization [31] and laboratory conditions, such 
as oxygen concentration, pH and osmolality in the embryo culture 
medium, and temperature are related to an increased rate of mosa-
icism [30]. 

Management: transfer of mosaic embryos 

Multiple factors determine the fate and viability of mosaic embry-
os, such as the degree of mosaicism in the biopsied sample, the spe-
cific type and number of chromosomes involved, and the type of 
mosaicism. 

1. Priority for mosaic embryo transfer 
In 2016, the position statement of the PGDIS recommended priori-

ties for mosaic embryo transfers based on the specific chromosome 
involved and the level of mosaicism [32]. In 2017, the World Congress 
on Controversies in Preconception, Preimplantation and Prenatal Ge-
netic Diagnosis highlighted the need for PGT-A in IVF practice and 
updated the PGDIS position statement on recommendations for clini-
cal practice [33]. In 2018, Grati et al. [34] published a study on the cho-
rionic villi samples (CVS) and products of conception (POC) after natu-
ral pregnancy to provide a practice guideline whereby mosaic embry-
os could lead to healthy live births. In 2020, Munne et al. [35] suggest-
ed classifying mosaic embryos into high- ( >50%) and low-level 
( <50%) groups, with preference for transferring single segmental 
mosaic embryos over other types of mosaicism. In 2021, Viotti et al. [4] 
formulated a ranking system using outcome data from one thousand 
mosaic embryo transfers for the prioritization of mosaic embryos in 
the clinical setting. They confirmed that combined mosaic embryos 
have significantly lower implantation and pregnancy rates than eu-
ploid embryos. They also found that the type and level of mosaicism 
had a significant impact on the embryo transfer outcomes. Their 
study helped to elucidate the problems presented by mosaic transfer 
and attempted to provide firm conclusions. Relevant medical society 
practice guidelines and recommendations, including the recent PG-
DIS 2021 guidelines [36], are summarized in Table 1. 

Despite these diverse ranking approaches, attempts to provide 
clinical recommendations for patients may yet be in early stages. Un-
certainty remains regarding related factors affecting the clinical out-
come data of mosaic embryo transfer. Some studies have suggested 
differences in live-birth rates based on the type and level of mosa-
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icism [38] or involvement of a full versus partial chromosome [39], 
while others have failed to find such significance using the same 
classification system [40]. 

2. The degree of mosaicism 
Chromosomal mosaicism has been defined as low-level mosa-

icism if abnormal cells are in the 30%–50% range and high-level mo-
saicism if abnormal cells are in the 50%–70% range using the NGS 
validation algorithm [41]. Clinical outcome data related to high- ver-
sus low-level mosaicism still show conflicting results. Some studies 
found that low-level mosaicism was related to improvement in on-
going pregnancy rates [38], while others did not find statistically sig-
nificant results [40,42,43]. Embryos with low-level mosaicism are 
more likely to develop into healthy babies than high-level mosaic 
embryos, whereas high-level mosaic embryos increase the risk of 
miscarriage [35,38,41,44]. A recent prospective study found that em-
bryos with more than 50% mosaicism have a significantly lower im-
plantation rate (24.4% vs. 54.6%; p < 0.002), clinical pregnancy rate 
(15.2% vs. 46.4%; p < 0.001), and live birth rate (15.2% vs. 46.6%; 
p < 0.001) compared to euploid embryos in the NGS profile [38]. Ca-
palbo et al. [6] showed that low- (20%–30%) or moderate-degree 
(30%–50%) mosaic embryo transfer yielded similar clinical and neo-
natal outcomes in a prospective double-blinded non-selection trial. 

3. Specific chromosomes involved 
The clinical outcomes of mosaicism can be highly dependent on 

the chromosomes involved. Autosomes were ranked in order of their 
risk of placental insufficiency, intrauterine growth restriction, and 
uniparental disomy (UPD). The mosaic trisomy 16 chromosome is 
commonly affected in preimplantation embryos and leads to a high 
risk of abnormal perinatal outcomes, such as intrauterine growth re-
striction, preterm birth, and hypertensive disorders [45]. Chromo-
somes X, 21, and 22 have been reported to be susceptible to whole 
chromosome errors [46-48]. Chromosomes 2, 6, 7, 11, 14, 15, 16, and 
20 are known to be associated with UPD [49,50]. Recent findings 
showed that chromosome length had a positive correlation with the 
mitotic error of each chromosome, but a negative correlation with 
the meiotic error of the preimplantation embryo [47,51]. 

Grati et al. [34] devised a scoring system for prioritizing mosaic 
embryo transfers based on the mosaic patterns observed in prenatal 
samples and products of conception and on the involvement of spe-
cific chromosomes. Mosaic trisomies 1, 3, 10, 12, and 19 had top pri-
ority for embryo transfer because of their low risk of deleterious out-
comes, whereas mosaic trisomies 13, 16, 18, 21, 45, and monosomy 
X had a high risk of nonviable births and should be avoided. Howev-
er, this system was limited by the difficulty found in assessing the de-
gree of mosaicism in preimplantation embryos based only on mo-

lecular and cytogenetic results.  

4. Monosomies versus trisomies  
Most monosomies arise from mitotic errors and most trisomies re-

sult from nondisjunction during maternal meiotic errors [17,52]. 
Since monosomic cells are less likely to be viable than trisomic cells 
[53], most monosomic cells are removed at the post-implantation 
phase [54,55]. Trisomic mosaicism can occur in live births with chro-
mosomal aneuploidy and is associated with cognitive and physical 
impairments [56]. Although PGDIS recommended the transfer of 
embryos with mosaic monosomies over those with mosaic trisomies 
in 2016 [32], this statement was updated and removed in 2019 [10]. 
In addition, some authors did not find a significant difference in 
pregnancy rates between monosomic and trisomic mosaic embryos 
[40]. According to the PGDIS guidelines, mosaic trisomies 1, 3, 4, 5, 6, 
8, 9, 10, 11, 12, 17, 19, 20, 22, X, and Y are preferred over mosaic triso-
mies 2, 7, 13, 14, 15, 16, 18, and 21 when mosaic trisomy is being 
considered for transfer [32]. Recent studies proposed that mosaic 
monosomies and mosaic trisomies have similar implantation rates 
(46% and 47.2%, respectively; p > 0.05) and ongoing pregnancy 
rates (36% and 33%, respectively; p > 0.05) [4,33]. 

5. Whole versus segmental aberrations 
When duplication or deletion errors occur in a small portion of 

DNA during mitotic division, the embryo will have a mosaic of the 
segmental error, allowing some cells to have a normal copy number 
of chromosomes and others to have segmental deletion or duplica-
tion of the chromosomes [57]. In one study, segmental gain or loss 
was affected in 25% of mosaicism [58]. Some authors suggested that 
the incidence of segmental mosaicism may be overestimated due to 
biological and technical errors [59]. Clinical perspectives of embryo 
mosaicism, with respect to full versus partial aneuploidies, have 
been inconsistent. Some studies have reported a higher clinical 
pregnancy rate in partial aneuploid mosaicism [39,42,60], while oth-
ers have not found a significant difference [40]. In the subgroup of 
segmental mosaic embryos, Viotti et al. [4] recently investigated clin-
ical outcomes after the transfer of 1,000 mosaic embryos and report-
ed similar implantation rates (51.6% vs. 57.2%; p = 0.001) and ongo-
ing pregnancy rates (43.1% vs. 52.3%; p = 0.001) compared to eu-
ploid embryos. Other recent studies also revealed that segmental 
mosaic embryos had clinical outcomes comparable to euploid em-
bryos [12,61]. 

Regarding chromosome type, large chromosomes such as chro-
mosomes 1 to 9 are prone to breakage, resulting in segmental mosa-
icism [62,63], while a significantly lower percentage of copy number 
errors were observed in small chromosomes and acrocentric chro-
mosomes (e.g., chromosomes 19, 21, 22, and Y) [64,65]. 
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Segmental aneuploidies originate because of mitotic errors during 
preimplantation development [24]. This is related to blastocyst mor-
phology, not to maternal age or clinical and embryological parame-
ters [66]. A previous multicenter study of 822 mosaic embryo trans-
fers demonstrated that the reproductive potential of mosaic embry-
os is affected by the number of euploid cells and the complexity in 
the TE biopsy sample [67]. The embryos with segmental aneuploidy 
had better clinical outcomes than mosaic embryos with one or two 
involved chromosomes (implantation rate: p < 0.001, ongoing preg-
nancy rate/birth rate: p < 0.001). 

6. The number of chromosomes involved (single versus double 
versus complex aneuploidies) 

Several studies found reduced pregnancy capacity in mosaic em-
bryos that had three or more chromosomes involved [40] and in seg-
mental mosaicism that had two or more chromosomes involved [42], 
whereas other studies did not report clinically significant differences 
between mosaic embryos involving one or two chromosomes 
[40,68]. Complex mosaic embryos had the lowest implantation rates 
among single aneuploid, double aneuploid, and segmental mosaic 
embryos [40].  

Genetic counseling  

A recent statement by the American Society for Reproductive 
Medicine highlighted the importance of patient education prior to 
PGT-A [37]. Before the transfer of mosaic embryos, counseling should 
include a discussion of the potential challenges in interpreting mo-
saic results, the potential risks of mosaic embryo transfers, and the 
limited neonatal outcome data available. In addition, counseling 
should provide information regarding the genetic advantages, risks, 
and limitations of a prenatal diagnosis. Thus far, most prenatal test-
ing results after mosaic embryo transfers have shown normal healthy 
fetuses with no specific chromosomal abnormalities [3]. However, 
we found two reports of babies with abnormal karyotypes: a baby 
with 15q duplication syndrome after transfer of a 57% segmental 
mosaic embryo [69] and a healthy baby with 2% mosaic monosomy 

2 after transfer of a 35% mosaic monosomy 2 embryo [70]. 
Patients should be informed about the risk of mosaicism in a biop-

sy specimen, the complexities of the various possible outcomes after 
transfer of a mosaic embryo, and the need for close prenatal moni-
toring, including amniocentesis. Until definitive data is available, pa-
tients should be advised to go through additional cycles if possible 
to obtain euploid embryos instead of transferring a mosaic embryo. 
A schematic prioritization of mosaic embryos according to clinical 
outcomes is shown in Table 2. 

Prenatal diagnosis after transfer of mosaic 
embryos 

If a pregnancy has been confirmed after mosaic embryo transfer, 
prenatal diagnosis is recommended to identify fetal chromosomes 
and other genetic conditions. Although evidence-based guidance 
for prenatal testing after mosaic embryo transfer is still lacking, most 
practice statements consistently recommend amniocentesis as the 
gold standard for prenatal diagnosis [32,33,37,71]. Karyotyping of 
the amniocytes obtained by amniocentesis is done to diagnose an-
euploidy in the fetus [72]. CVS can be useful for patients seeking a di-
agnosis during the first trimester; however, CVS results represent pla-
cental cells derived from the TE. Thus, mosaic findings detected using 
CVS may indicate placental mosaicism, and follow-up amniocentesis 
is required to clarify the results. The major advantage of amniocente-
sis is the ability to analyze fetal cells directly, but it may miss low-level 
mosaicism. Therefore, amniocentesis best represents the chromo-
some complement within fetal tissues, but patients should know 
that some mosaicism may not be detectable. Depending on the 
PGT-A result, further analysis of prenatal samples should also be con-
sidered; chromosomal microarray can be performed if segmental 
aneuploidy or UPD is involved [37,73]. Cell-free DNA (cfDNA) testing, 
also known as noninvasive prenatal testing (NIPT), has not been vali-
dated to detect mosaicism because NIPT analyzes circulating cfDNA 
fragments in the maternal plasma derived from both the mother’s 
and apoptotic trophoblasts, but not from the fetus itself [74]. 

Table 2. Schematic prioritization of mosaic embryo classified according to favorable clinical outcomes

Priority Percentage of mosaicism
Monosomy vs. 

trisomy
Segmental vs. 

whole chromosome
Specific chromosomes involved

No. of Chr involved (single 
vs. double vs. complex)

Low clinical risk Low ( < 50%) Monosomy Segmental Chr 1, 3, 4, 5, 6, 10, 12, 17, 19, 20, 22, X, Y Single
High clinical risk High ( > 50%) Trisomy Whole Chr 13, 18, 21: best-avoided Complex

Chr 6, 7, 11, 14, 15, 20: UPD risk
Chr 2, 16: IUGR risk
Chr 8, 9: aneuploidy viability

Chr, chromosome; UPD, uniparental disomy; IUGR, intrauterine growth restriction.
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Conclusion 

Although interest in mosaic embryo transfers is increasing, the de-
bate over whether mosaic embryos can be transferred is ongoing. In 
practice, the identification of mosaic subgroups that are viable and 
worthy of transfer is very important, but it is also vital to inform pa-
tients that the data on postnatal and neonatal outcomes following 
mosaic embryo transfers are still limited and that clinical outcomes 
have been mixed. We emphasize the need for further research on 
the genetic and clinical outcomes of mosaic embryo transfers. Large-
scale multicenter studies would be of particular value in collecting 
data for the risk evaluation of mosaic embryo transfers and could po-
tentially reduce the disposal of viable embryos for implantation and 
live births. 
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