DOI QR코드

DOI QR Code

A Study on the Physical Properties of PP/Kenaf Felt Composites According to Kenaf Fiber Compositions

케냐프 섬유 조성에 따른 PP/케냐프 펠트 복합체의 물리적 성질 연구

  • 구선교 (네취코리아) ;
  • 김연철 (공주대학교 신소재공학부 고분자공학전공)
  • Received : 2022.08.04
  • Accepted : 2022.08.29
  • Published : 2022.10.10

Abstract

PP/KF felt was used to load a high content of kenaf fiber (KF) into polypropylene (PP), and polyurethane (PU) was used as a binder. In order to find an optimum composition ratio of the PU binder, the flexural strength of the PP/KF/PU felt composite according to the isocyanate and polyol ratio was evaluated. PP-g-MAH grafted with maleic anhydride (MAH) was applied as a compatibilizer. Tensile, flexural, and impact properties were evaluated to consider changes in mechanical properties of the PP/KF/PU felt composite, and the properties were improved.

폴리프로필렌(polypropylene, PP)에 고 함량의 케나프 섬유(kenaf fiber, KF)를 투입하기 위해 PP/KF 펠트가 사용되었으며, 바인더로 폴리우레탄(polyurethane, PU)이 사용되었다. PU 바인더의 조성비 선정을 위해 이소시아네이트와 polyol 비율에 따른 PP/KF/PU 펠트 복합체의 굴곡 강도를 평가하였다. 상용화제로 말레인산 무수물(maleic anhydride, MAH)이 그라프트된 PP-g-MAH가 적용되었다 PP/KF/PU 펠트 복합체의 기계적 물성 변화를 고찰하기 위해 인장, 굴곡 및 충격 특성을 평가하였고, 기계적 물성이 개선됨을 확인하였다.

Keywords

Acknowledgement

이 논문은 환경부의 폐자원에너지화 전문인력 양성사업으로 지원되었습니다.

References

  1. J. H. Shim, J. S, Yoon, and D. H. Cho, Natural fiber and biocomposites, Polym. Sci. Technol., 19, 299-306 (2008).
  2. A. Ashori, Wood-plastic composites as promising green-composites for automotive industries!, Bioresour. Technol., 99, 4661- 4667 (2008). https://doi.org/10.1016/j.biortech.2007.09.043
  3. D. H. Cho and H. J. Kim, Naturally cyclable biocomposites, Elast. Comp., 44, 13-21 (2009).
  4. H. J. Kim, B. H. Lee, D. H. Cho, S. E. Yoo, and J. H. Yun, Development of bio-composites for reducing VOCs as automotive interiors, Auto J., 33, 26-31 (2011).
  5. M. K. Lee, and S. L. Yoon, Utilization of kenaf cultivated in Korea (II) - Physical properties of kenaf TMP and KP-, J. Korea TAPPI, 39, 45-52 (2007).
  6. J. S. Oh, S. H. Lee, S. H. Bumm, and K. J. Kim, Nano-kenaf cellulose effects on improved mechanical properties of polypropylene composite, Polymer(Korea), 37, 613-617 (2013). https://doi.org/10.7317/pk.2013.37.5.613
  7. S. Lee, B. H. Lee, H. J. Kim, S. M. Kim, and Y. G. Eom, Propreties evaluation of bio-composite by content and particle size of bamboo Flour, J. Korea Wood Sci. Technol., 37, 310-319 (2009).
  8. N. S. Suharty, I. P. Almarnar, Sudirman, K. Dihardjo, and N. Astasari, Flammability, biodegradability and mechanical properties of bio-composites waste polypropylene/kenaf fiber containing nano CaCO3 with diammonium phosphate, Procedia Chem., 4, 282-287 (2012). https://doi.org/10.1016/j.proche.2012.06.039
  9. M. J. John, C. Bellmann, and R. D. Anandjiwala, Kenaf-polypropylene composites: Effect of amphiphilic coupling agent on surface properties of fibres and composites, Carbohydr. Chem., 82, 549-554 (2010).
  10. F. Md. Salleh, A. Hassan, R. Yahay, and A. D. Azzahari, Effects of extrusion temperature on the rheological, dynamic mechanical and tensile properties of kenaf fiber/HDPE composites, Compos. B. Eng., 58, 259-265 (2014). https://doi.org/10.1016/j.compositesb.2013.10.068
  11. A. Hao, H. Zhao, W. Jiang, L. Yuan, and J. Y. Chen, Mechanical Properties of Kenaf/Polypropylene Nonwoven Composites, J. Polym. Environ., 20, 959-966 (2012). https://doi.org/10.1007/s10924-012-0484-8
  12. Y. Wang, Effect of comsolidation method on the mechanical properties of nonwoven fabric reinforced composites, Appl. Comp. Mater., 6, 19-34 (1999). https://doi.org/10.1023/A:1008877110966
  13. K. D. Lee and W. K. Lee, A Deveopment trend of bio-plastics in automotive, Auto J., 31, 44-51 (2009).
  14. M. J. John and S. Thomas, Biofibre and biocomposites, Carbohydr. Chem., 71, 343-364 (2008).
  15. S. J. Kim, C. S. Yoo, and C. S. Ha, Rheological properties during mixtin and thermal properties of polypropylene/natural fiber composite: II. effects of a compatibilizer, J. Adhes. Interf., 10, 23-29 (2009).
  16. J. M. Park, S. T. Quang, B. S. Hwang, and K. L. DeVries, Interfacial evaluation of modified Jute and Hemp fibers/polyproplyene (PP)-maleic anhydride polypropylene copolymers (PP-MAPP) Composites using micromechanical technique and nondestructive acoustic emission, Compos. Struct. Technol., 66, 2686-2699 (2006). https://doi.org/10.1016/j.compscitech.2006.03.014
  17. N. Sgriccia, M. C. Hawley, and M. Misra, Characterization of natural fiber surfaces and natural fiber composites, Compos. A. Appl. Sci. Manuf., 39, 1632-1637 (2008). https://doi.org/10.1016/j.compositesa.2008.07.007
  18. X. Li, P. G. Tabil, and S. Panigrahi, Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review, J. Polym. Environ., 15, 25-33 (2007). https://doi.org/10.1007/s10924-006-0042-3
  19. D. M. Panaitescu, C. A. Nicolae, Z. Vuluga, C. Vitelaru, C. G. Sanporean, C. Zaharia, D. Florea, and G. Vasilievici, J. Indus. Eng. Chem., 37, 137-146 (2016). https://doi.org/10.1016/j.jiec.2016.03.018
  20. M. Ragoubi, D. Bienaime, S. Molina, B. George, and A. Merlin, Impact of corona treated hemp fibres onto mechanical properties of polypropylene composites made thereof, Ind. Crops. Prod., 31, 34-349 (2010). https://doi.org/10.1016/j.indcrop.2009.08.005
  21. S. G. Ku, Y. S. Kim, D. W. Kim, K. S. Kim, and Y. C. Kim, Effect of silane coupling agent on physical properties of polypropylene (PP)/kenaf fiber (KF) felt composites, Appl. Chem. Eng., 29, 37-42 (2018). https://doi.org/10.14478/ACE.2017.1101
  22. J. W. Lee, S. G. Ku, B. H. Lee, K.-W. Lee, C. W. Kim, K. S. Kim, and Y. C. Kim, Effect of the compatibilizer on physical properties of polypropylene (PP)/bamboo fiber (BF) composites, Appl. Chem. Eng., 26, 615-620 (2015) https://doi.org/10.14478/ACE.2015.1091
  23. S. G. Ku, Y. S. Kim, Y. E. Hong, D. W. Kim, K. S. Kim, and Y. C. Kim, Study on physical properties of maleic anhydride grafted polypropylene (PP)/kenaf fiber (KF) composites, Appl. Chem. Eng., 28, 73-79 (2017). https://doi.org/10.14478/ACE.2016.1110